ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpinq1 Unicode version

Theorem addpinq1 7426
Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.)
Assertion
Ref Expression
addpinq1  |-  ( A  e.  N.  ->  [ <. ( A  +N  1o ) ,  1o >. ]  ~Q  =  ( [ <. A ,  1o >. ]  ~Q  +Q  1Q ) )

Proof of Theorem addpinq1
StepHypRef Expression
1 df-1nqqs 7313 . . . . 5  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
21oveq2i 5864 . . . 4  |-  ( [
<. A ,  1o >. ]  ~Q  +Q  1Q )  =  ( [ <. A ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )
3 1pi 7277 . . . . 5  |-  1o  e.  N.
4 addpipqqs 7332 . . . . . 6  |-  ( ( ( A  e.  N.  /\  1o  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. A ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  )
53, 3, 4mpanr12 437 . . . . 5  |-  ( ( A  e.  N.  /\  1o  e.  N. )  -> 
( [ <. A ,  1o >. ]  ~Q  +Q  [
<. 1o ,  1o >. ]  ~Q  )  =  [ <. ( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o ) >. ]  ~Q  )
63, 5mpan2 423 . . . 4  |-  ( A  e.  N.  ->  ( [ <. A ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. ( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o ) >. ]  ~Q  )
72, 6eqtrid 2215 . . 3  |-  ( A  e.  N.  ->  ( [ <. A ,  1o >. ]  ~Q  +Q  1Q )  =  [ <. (
( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  )
8 mulidpi 7280 . . . . . . 7  |-  ( 1o  e.  N.  ->  ( 1o  .N  1o )  =  1o )
93, 8ax-mp 5 . . . . . 6  |-  ( 1o 
.N  1o )  =  1o
109oveq2i 5864 . . . . 5  |-  ( ( A  .N  1o )  +N  ( 1o  .N  1o ) )  =  ( ( A  .N  1o )  +N  1o )
1110, 9opeq12i 3770 . . . 4  |-  <. (
( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>.  =  <. ( ( A  .N  1o )  +N  1o ) ,  1o >.
12 eceq1 6548 . . . 4  |-  ( <.
( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o ) >.  =  <. ( ( A  .N  1o )  +N  1o ) ,  1o >.  ->  [ <. ( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  =  [ <. ( ( A  .N  1o )  +N  1o ) ,  1o >. ]  ~Q  )
1311, 12ax-mp 5 . . 3  |-  [ <. ( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  =  [ <. ( ( A  .N  1o )  +N  1o ) ,  1o >. ]  ~Q
147, 13eqtrdi 2219 . 2  |-  ( A  e.  N.  ->  ( [ <. A ,  1o >. ]  ~Q  +Q  1Q )  =  [ <. (
( A  .N  1o )  +N  1o ) ,  1o >. ]  ~Q  )
15 mulidpi 7280 . . . . 5  |-  ( A  e.  N.  ->  ( A  .N  1o )  =  A )
1615oveq1d 5868 . . . 4  |-  ( A  e.  N.  ->  (
( A  .N  1o )  +N  1o )  =  ( A  +N  1o ) )
1716opeq1d 3771 . . 3  |-  ( A  e.  N.  ->  <. (
( A  .N  1o )  +N  1o ) ,  1o >.  =  <. ( A  +N  1o ) ,  1o >. )
1817eceq1d 6549 . 2  |-  ( A  e.  N.  ->  [ <. ( ( A  .N  1o )  +N  1o ) ,  1o >. ]  ~Q  =  [ <. ( A  +N  1o ) ,  1o >. ]  ~Q  )
1914, 18eqtr2d 2204 1  |-  ( A  e.  N.  ->  [ <. ( A  +N  1o ) ,  1o >. ]  ~Q  =  ( [ <. A ,  1o >. ]  ~Q  +Q  1Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3586  (class class class)co 5853   1oc1o 6388   [cec 6511   N.cnpi 7234    +N cpli 7235    .N cmi 7236    ~Q ceq 7241   1Qc1q 7243    +Q cplq 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-plpq 7306  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-1nqqs 7313
This theorem is referenced by:  pitonnlem2  7809
  Copyright terms: Public domain W3C validator