ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpinq1 Unicode version

Theorem addpinq1 7612
Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.)
Assertion
Ref Expression
addpinq1  |-  ( A  e.  N.  ->  [ <. ( A  +N  1o ) ,  1o >. ]  ~Q  =  ( [ <. A ,  1o >. ]  ~Q  +Q  1Q ) )

Proof of Theorem addpinq1
StepHypRef Expression
1 df-1nqqs 7499 . . . . 5  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
21oveq2i 5978 . . . 4  |-  ( [
<. A ,  1o >. ]  ~Q  +Q  1Q )  =  ( [ <. A ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )
3 1pi 7463 . . . . 5  |-  1o  e.  N.
4 addpipqqs 7518 . . . . . 6  |-  ( ( ( A  e.  N.  /\  1o  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. A ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. (
( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  )
53, 3, 4mpanr12 439 . . . . 5  |-  ( ( A  e.  N.  /\  1o  e.  N. )  -> 
( [ <. A ,  1o >. ]  ~Q  +Q  [
<. 1o ,  1o >. ]  ~Q  )  =  [ <. ( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o ) >. ]  ~Q  )
63, 5mpan2 425 . . . 4  |-  ( A  e.  N.  ->  ( [ <. A ,  1o >. ]  ~Q  +Q  [ <. 1o ,  1o >. ]  ~Q  )  =  [ <. ( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o ) >. ]  ~Q  )
72, 6eqtrid 2252 . . 3  |-  ( A  e.  N.  ->  ( [ <. A ,  1o >. ]  ~Q  +Q  1Q )  =  [ <. (
( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  )
8 mulidpi 7466 . . . . . . 7  |-  ( 1o  e.  N.  ->  ( 1o  .N  1o )  =  1o )
93, 8ax-mp 5 . . . . . 6  |-  ( 1o 
.N  1o )  =  1o
109oveq2i 5978 . . . . 5  |-  ( ( A  .N  1o )  +N  ( 1o  .N  1o ) )  =  ( ( A  .N  1o )  +N  1o )
1110, 9opeq12i 3838 . . . 4  |-  <. (
( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>.  =  <. ( ( A  .N  1o )  +N  1o ) ,  1o >.
12 eceq1 6678 . . . 4  |-  ( <.
( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o ) >.  =  <. ( ( A  .N  1o )  +N  1o ) ,  1o >.  ->  [ <. ( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  =  [ <. ( ( A  .N  1o )  +N  1o ) ,  1o >. ]  ~Q  )
1311, 12ax-mp 5 . . 3  |-  [ <. ( ( A  .N  1o )  +N  ( 1o  .N  1o ) ) ,  ( 1o  .N  1o )
>. ]  ~Q  =  [ <. ( ( A  .N  1o )  +N  1o ) ,  1o >. ]  ~Q
147, 13eqtrdi 2256 . 2  |-  ( A  e.  N.  ->  ( [ <. A ,  1o >. ]  ~Q  +Q  1Q )  =  [ <. (
( A  .N  1o )  +N  1o ) ,  1o >. ]  ~Q  )
15 mulidpi 7466 . . . . 5  |-  ( A  e.  N.  ->  ( A  .N  1o )  =  A )
1615oveq1d 5982 . . . 4  |-  ( A  e.  N.  ->  (
( A  .N  1o )  +N  1o )  =  ( A  +N  1o ) )
1716opeq1d 3839 . . 3  |-  ( A  e.  N.  ->  <. (
( A  .N  1o )  +N  1o ) ,  1o >.  =  <. ( A  +N  1o ) ,  1o >. )
1817eceq1d 6679 . 2  |-  ( A  e.  N.  ->  [ <. ( ( A  .N  1o )  +N  1o ) ,  1o >. ]  ~Q  =  [ <. ( A  +N  1o ) ,  1o >. ]  ~Q  )
1914, 18eqtr2d 2241 1  |-  ( A  e.  N.  ->  [ <. ( A  +N  1o ) ,  1o >. ]  ~Q  =  ( [ <. A ,  1o >. ]  ~Q  +Q  1Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   <.cop 3646  (class class class)co 5967   1oc1o 6518   [cec 6641   N.cnpi 7420    +N cpli 7421    .N cmi 7422    ~Q ceq 7427   1Qc1q 7429    +Q cplq 7430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-plpq 7492  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-1nqqs 7499
This theorem is referenced by:  pitonnlem2  7995
  Copyright terms: Public domain W3C validator