ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprab2co GIF version

Theorem oprab2co 6197
Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
Hypotheses
Ref Expression
oprab2co.1 ((𝑥𝐴𝑦𝐵) → 𝐶𝑅)
oprab2co.2 ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)
oprab2co.3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)
oprab2co.4 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))
Assertion
Ref Expression
oprab2co (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprab2co
StepHypRef Expression
1 oprab2co.1 . . 3 ((𝑥𝐴𝑦𝐵) → 𝐶𝑅)
2 oprab2co.2 . . 3 ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)
3 opelxpi 4643 . . 3 ((𝐶𝑅𝐷𝑆) → ⟨𝐶, 𝐷⟩ ∈ (𝑅 × 𝑆))
41, 2, 3syl2anc 409 . 2 ((𝑥𝐴𝑦𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝑅 × 𝑆))
5 oprab2co.3 . 2 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)
6 oprab2co.4 . . 3 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))
7 df-ov 5856 . . . . 5 (𝐶𝑀𝐷) = (𝑀‘⟨𝐶, 𝐷⟩)
87a1i 9 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐶𝑀𝐷) = (𝑀‘⟨𝐶, 𝐷⟩))
98mpoeq3ia 5918 . . 3 (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝑀‘⟨𝐶, 𝐷⟩))
106, 9eqtri 2191 . 2 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑀‘⟨𝐶, 𝐷⟩))
114, 5, 10oprabco 6196 1 (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  cop 3586   × cxp 4609  ccom 4615   Fn wfn 5193  cfv 5198  (class class class)co 5853  cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator