Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprab2co | GIF version |
Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.) |
Ref | Expression |
---|---|
oprab2co.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑅) |
oprab2co.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑆) |
oprab2co.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈𝐶, 𝐷〉) |
oprab2co.4 | ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑀𝐷)) |
Ref | Expression |
---|---|
oprab2co | ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprab2co.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑅) | |
2 | oprab2co.2 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑆) | |
3 | opelxpi 4636 | . . 3 ⊢ ((𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆) → 〈𝐶, 𝐷〉 ∈ (𝑅 × 𝑆)) | |
4 | 1, 2, 3 | syl2anc 409 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝑅 × 𝑆)) |
5 | oprab2co.3 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈𝐶, 𝐷〉) | |
6 | oprab2co.4 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑀𝐷)) | |
7 | df-ov 5845 | . . . . 5 ⊢ (𝐶𝑀𝐷) = (𝑀‘〈𝐶, 𝐷〉) | |
8 | 7 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐶𝑀𝐷) = (𝑀‘〈𝐶, 𝐷〉)) |
9 | 8 | mpoeq3ia 5907 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑀𝐷)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑀‘〈𝐶, 𝐷〉)) |
10 | 6, 9 | eqtri 2186 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑀‘〈𝐶, 𝐷〉)) |
11 | 4, 5, 10 | oprabco 6185 | 1 ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 〈cop 3579 × cxp 4602 ∘ ccom 4608 Fn wfn 5183 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |