ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfi Unicode version

Theorem unsnfi 6629
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
Assertion
Ref Expression
unsnfi  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  u.  { B } )  e.  Fin )

Proof of Theorem unsnfi
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6478 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 118 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 964 . 2  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  E. n  e.  om  A  ~~  n
)
4 peano2 4410 . . . . 5  |-  ( n  e.  om  ->  suc  n  e.  om )
54ad2antrl 474 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  e.  om )
6 simprr 499 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
7 simpl2 947 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  B  e.  V )
8 simprl 498 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  n  e.  om )
9 en2sn 6530 . . . . . . 7  |-  ( ( B  e.  V  /\  n  e.  om )  ->  { B }  ~~  { n } )
107, 8, 9syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  { B }  ~~  {
n } )
11 disjsn 3504 . . . . . . . . 9  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
1211biimpri 131 . . . . . . . 8  |-  ( -.  B  e.  A  -> 
( A  i^i  { B } )  =  (/) )
13123ad2ant3 966 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  i^i  { B } )  =  (/) )
1413adantr 270 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  i^i  { B } )  =  (/) )
15 nnord 4426 . . . . . . . . 9  |-  ( n  e.  om  ->  Ord  n )
16 ordirr 4358 . . . . . . . . 9  |-  ( Ord  n  ->  -.  n  e.  n )
1715, 16syl 14 . . . . . . . 8  |-  ( n  e.  om  ->  -.  n  e.  n )
18 disjsn 3504 . . . . . . . 8  |-  ( ( n  i^i  { n } )  =  (/)  <->  -.  n  e.  n )
1917, 18sylibr 132 . . . . . . 7  |-  ( n  e.  om  ->  (
n  i^i  { n } )  =  (/) )
2019ad2antrl 474 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( n  i^i  {
n } )  =  (/) )
21 unen 6533 . . . . . 6  |-  ( ( ( A  ~~  n  /\  { B }  ~~  { n } )  /\  ( ( A  i^i  { B } )  =  (/)  /\  ( n  i^i 
{ n } )  =  (/) ) )  -> 
( A  u.  { B } )  ~~  (
n  u.  { n } ) )
226, 10, 14, 20, 21syl22anc 1175 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  ~~  (
n  u.  { n } ) )
23 df-suc 4198 . . . . 5  |-  suc  n  =  ( n  u. 
{ n } )
2422, 23syl6breqr 3885 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  ~~  suc  n )
25 breq2 3849 . . . . 5  |-  ( m  =  suc  n  -> 
( ( A  u.  { B } )  ~~  m 
<->  ( A  u.  { B } )  ~~  suc  n ) )
2625rspcev 2722 . . . 4  |-  ( ( suc  n  e.  om  /\  ( A  u.  { B } )  ~~  suc  n )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m )
275, 24, 26syl2anc 403 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
28 isfi 6478 . . 3  |-  ( ( A  u.  { B } )  e.  Fin  <->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
2927, 28sylibr 132 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  e.  Fin )
303, 29rexlimddv 2493 1  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  u.  { B } )  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    /\ w3a 924    = wceq 1289    e. wcel 1438   E.wrex 2360    u. cun 2997    i^i cin 2998   (/)c0 3286   {csn 3446   class class class wbr 3845   Ord word 4189   suc csuc 4192   omcom 4405    ~~ cen 6455   Fincfn 6457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-1o 6181  df-er 6292  df-en 6458  df-fin 6460
This theorem is referenced by:  unfidisj  6632  fisseneq  6642  ssfirab  6643  fnfi  6646  fidcenumlemr  6664  fsumsplitsn  10804  fsumabs  10859  fsumiun  10871
  Copyright terms: Public domain W3C validator