ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfi Unicode version

Theorem unsnfi 6892
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
Assertion
Ref Expression
unsnfi  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  u.  { B } )  e.  Fin )

Proof of Theorem unsnfi
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6735 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1013 . 2  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  E. n  e.  om  A  ~~  n
)
4 peano2 4577 . . . . 5  |-  ( n  e.  om  ->  suc  n  e.  om )
54ad2antrl 487 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  e.  om )
6 simprr 527 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
7 simpl2 996 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  B  e.  V )
8 simprl 526 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  n  e.  om )
9 en2sn 6787 . . . . . . 7  |-  ( ( B  e.  V  /\  n  e.  om )  ->  { B }  ~~  { n } )
107, 8, 9syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  { B }  ~~  {
n } )
11 disjsn 3643 . . . . . . . . 9  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
1211biimpri 132 . . . . . . . 8  |-  ( -.  B  e.  A  -> 
( A  i^i  { B } )  =  (/) )
13123ad2ant3 1015 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  i^i  { B } )  =  (/) )
1413adantr 274 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  i^i  { B } )  =  (/) )
15 nnord 4594 . . . . . . . . 9  |-  ( n  e.  om  ->  Ord  n )
16 ordirr 4524 . . . . . . . . 9  |-  ( Ord  n  ->  -.  n  e.  n )
1715, 16syl 14 . . . . . . . 8  |-  ( n  e.  om  ->  -.  n  e.  n )
18 disjsn 3643 . . . . . . . 8  |-  ( ( n  i^i  { n } )  =  (/)  <->  -.  n  e.  n )
1917, 18sylibr 133 . . . . . . 7  |-  ( n  e.  om  ->  (
n  i^i  { n } )  =  (/) )
2019ad2antrl 487 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( n  i^i  {
n } )  =  (/) )
21 unen 6790 . . . . . 6  |-  ( ( ( A  ~~  n  /\  { B }  ~~  { n } )  /\  ( ( A  i^i  { B } )  =  (/)  /\  ( n  i^i 
{ n } )  =  (/) ) )  -> 
( A  u.  { B } )  ~~  (
n  u.  { n } ) )
226, 10, 14, 20, 21syl22anc 1234 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  ~~  (
n  u.  { n } ) )
23 df-suc 4354 . . . . 5  |-  suc  n  =  ( n  u. 
{ n } )
2422, 23breqtrrdi 4029 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  ~~  suc  n )
25 breq2 3991 . . . . 5  |-  ( m  =  suc  n  -> 
( ( A  u.  { B } )  ~~  m 
<->  ( A  u.  { B } )  ~~  suc  n ) )
2625rspcev 2834 . . . 4  |-  ( ( suc  n  e.  om  /\  ( A  u.  { B } )  ~~  suc  n )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m )
275, 24, 26syl2anc 409 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
28 isfi 6735 . . 3  |-  ( ( A  u.  { B } )  e.  Fin  <->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
2927, 28sylibr 133 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  e.  Fin )
303, 29rexlimddv 2592 1  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  u.  { B } )  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3581   class class class wbr 3987   Ord word 4345   suc csuc 4348   omcom 4572    ~~ cen 6712   Fincfn 6714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-1o 6392  df-er 6509  df-en 6715  df-fin 6717
This theorem is referenced by:  unfidisj  6895  fisseneq  6905  ssfirab  6907  fnfi  6910  fidcenumlemr  6928  fsumsplitsn  11360  fsumabs  11415  fsumiun  11427  fprodunsn  11554  fprod2dlemstep  11572  fsumcncntop  13309
  Copyright terms: Public domain W3C validator