Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unsnfi | Unicode version |
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.) |
Ref | Expression |
---|---|
unsnfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6739 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | 3ad2ant1 1013 | . 2 |
4 | peano2 4579 | . . . . 5 | |
5 | 4 | ad2antrl 487 | . . . 4 |
6 | simprr 527 | . . . . . 6 | |
7 | simpl2 996 | . . . . . . 7 | |
8 | simprl 526 | . . . . . . 7 | |
9 | en2sn 6791 | . . . . . . 7 | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . 6 |
11 | disjsn 3645 | . . . . . . . . 9 | |
12 | 11 | biimpri 132 | . . . . . . . 8 |
13 | 12 | 3ad2ant3 1015 | . . . . . . 7 |
14 | 13 | adantr 274 | . . . . . 6 |
15 | nnord 4596 | . . . . . . . . 9 | |
16 | ordirr 4526 | . . . . . . . . 9 | |
17 | 15, 16 | syl 14 | . . . . . . . 8 |
18 | disjsn 3645 | . . . . . . . 8 | |
19 | 17, 18 | sylibr 133 | . . . . . . 7 |
20 | 19 | ad2antrl 487 | . . . . . 6 |
21 | unen 6794 | . . . . . 6 | |
22 | 6, 10, 14, 20, 21 | syl22anc 1234 | . . . . 5 |
23 | df-suc 4356 | . . . . 5 | |
24 | 22, 23 | breqtrrdi 4031 | . . . 4 |
25 | breq2 3993 | . . . . 5 | |
26 | 25 | rspcev 2834 | . . . 4 |
27 | 5, 24, 26 | syl2anc 409 | . . 3 |
28 | isfi 6739 | . . 3 | |
29 | 27, 28 | sylibr 133 | . 2 |
30 | 3, 29 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wrex 2449 cun 3119 cin 3120 c0 3414 csn 3583 class class class wbr 3989 word 4347 csuc 4350 com 4574 cen 6716 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-1o 6395 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: unfidisj 6899 fisseneq 6909 ssfirab 6911 fnfi 6914 fidcenumlemr 6932 fsumsplitsn 11373 fsumabs 11428 fsumiun 11440 fprodunsn 11567 fprod2dlemstep 11585 fsumcncntop 13350 |
Copyright terms: Public domain | W3C validator |