| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unsnfi | Unicode version | ||
| Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.) |
| Ref | Expression |
|---|---|
| unsnfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6920 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | 3ad2ant1 1042 |
. 2
|
| 4 | peano2 4687 |
. . . . 5
| |
| 5 | 4 | ad2antrl 490 |
. . . 4
|
| 6 | simprr 531 |
. . . . . 6
| |
| 7 | simpl2 1025 |
. . . . . . 7
| |
| 8 | simprl 529 |
. . . . . . 7
| |
| 9 | en2sn 6974 |
. . . . . . 7
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . 6
|
| 11 | disjsn 3728 |
. . . . . . . . 9
| |
| 12 | 11 | biimpri 133 |
. . . . . . . 8
|
| 13 | 12 | 3ad2ant3 1044 |
. . . . . . 7
|
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | nnord 4704 |
. . . . . . . . 9
| |
| 16 | ordirr 4634 |
. . . . . . . . 9
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . 8
|
| 18 | disjsn 3728 |
. . . . . . . 8
| |
| 19 | 17, 18 | sylibr 134 |
. . . . . . 7
|
| 20 | 19 | ad2antrl 490 |
. . . . . 6
|
| 21 | unen 6977 |
. . . . . 6
| |
| 22 | 6, 10, 14, 20, 21 | syl22anc 1272 |
. . . . 5
|
| 23 | df-suc 4462 |
. . . . 5
| |
| 24 | 22, 23 | breqtrrdi 4125 |
. . . 4
|
| 25 | breq2 4087 |
. . . . 5
| |
| 26 | 25 | rspcev 2907 |
. . . 4
|
| 27 | 5, 24, 26 | syl2anc 411 |
. . 3
|
| 28 | isfi 6920 |
. . 3
| |
| 29 | 27, 28 | sylibr 134 |
. 2
|
| 30 | 3, 29 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-1o 6568 df-er 6688 df-en 6896 df-fin 6898 |
| This theorem is referenced by: unfidisj 7092 tpfidceq 7100 fisseneq 7104 ssfirab 7106 fnfi 7111 fidcenumlemr 7130 fsumsplitsn 11929 fsumabs 11984 fsumiun 11996 fprodunsn 12123 fprod2dlemstep 12141 fsumcncntop 15249 dvmptfsum 15407 |
| Copyright terms: Public domain | W3C validator |