Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unsnfi | Unicode version |
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.) |
Ref | Expression |
---|---|
unsnfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6727 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | 3ad2ant1 1008 | . 2 |
4 | peano2 4572 | . . . . 5 | |
5 | 4 | ad2antrl 482 | . . . 4 |
6 | simprr 522 | . . . . . 6 | |
7 | simpl2 991 | . . . . . . 7 | |
8 | simprl 521 | . . . . . . 7 | |
9 | en2sn 6779 | . . . . . . 7 | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . 6 |
11 | disjsn 3638 | . . . . . . . . 9 | |
12 | 11 | biimpri 132 | . . . . . . . 8 |
13 | 12 | 3ad2ant3 1010 | . . . . . . 7 |
14 | 13 | adantr 274 | . . . . . 6 |
15 | nnord 4589 | . . . . . . . . 9 | |
16 | ordirr 4519 | . . . . . . . . 9 | |
17 | 15, 16 | syl 14 | . . . . . . . 8 |
18 | disjsn 3638 | . . . . . . . 8 | |
19 | 17, 18 | sylibr 133 | . . . . . . 7 |
20 | 19 | ad2antrl 482 | . . . . . 6 |
21 | unen 6782 | . . . . . 6 | |
22 | 6, 10, 14, 20, 21 | syl22anc 1229 | . . . . 5 |
23 | df-suc 4349 | . . . . 5 | |
24 | 22, 23 | breqtrrdi 4024 | . . . 4 |
25 | breq2 3986 | . . . . 5 | |
26 | 25 | rspcev 2830 | . . . 4 |
27 | 5, 24, 26 | syl2anc 409 | . . 3 |
28 | isfi 6727 | . . 3 | |
29 | 27, 28 | sylibr 133 | . 2 |
30 | 3, 29 | rexlimddv 2588 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wrex 2445 cun 3114 cin 3115 c0 3409 csn 3576 class class class wbr 3982 word 4340 csuc 4343 com 4567 cen 6704 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: unfidisj 6887 fisseneq 6897 ssfirab 6899 fnfi 6902 fidcenumlemr 6920 fsumsplitsn 11351 fsumabs 11406 fsumiun 11418 fprodunsn 11545 fprod2dlemstep 11563 fsumcncntop 13196 |
Copyright terms: Public domain | W3C validator |