| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unsnfi | Unicode version | ||
| Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.) |
| Ref | Expression |
|---|---|
| unsnfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6859 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | 3ad2ant1 1021 |
. 2
|
| 4 | peano2 4647 |
. . . . 5
| |
| 5 | 4 | ad2antrl 490 |
. . . 4
|
| 6 | simprr 531 |
. . . . . 6
| |
| 7 | simpl2 1004 |
. . . . . . 7
| |
| 8 | simprl 529 |
. . . . . . 7
| |
| 9 | en2sn 6912 |
. . . . . . 7
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . 6
|
| 11 | disjsn 3696 |
. . . . . . . . 9
| |
| 12 | 11 | biimpri 133 |
. . . . . . . 8
|
| 13 | 12 | 3ad2ant3 1023 |
. . . . . . 7
|
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | nnord 4664 |
. . . . . . . . 9
| |
| 16 | ordirr 4594 |
. . . . . . . . 9
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . 8
|
| 18 | disjsn 3696 |
. . . . . . . 8
| |
| 19 | 17, 18 | sylibr 134 |
. . . . . . 7
|
| 20 | 19 | ad2antrl 490 |
. . . . . 6
|
| 21 | unen 6915 |
. . . . . 6
| |
| 22 | 6, 10, 14, 20, 21 | syl22anc 1251 |
. . . . 5
|
| 23 | df-suc 4422 |
. . . . 5
| |
| 24 | 22, 23 | breqtrrdi 4089 |
. . . 4
|
| 25 | breq2 4051 |
. . . . 5
| |
| 26 | 25 | rspcev 2878 |
. . . 4
|
| 27 | 5, 24, 26 | syl2anc 411 |
. . 3
|
| 28 | isfi 6859 |
. . 3
| |
| 29 | 27, 28 | sylibr 134 |
. 2
|
| 30 | 3, 29 | rexlimddv 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-1o 6509 df-er 6627 df-en 6835 df-fin 6837 |
| This theorem is referenced by: unfidisj 7026 tpfidceq 7034 fisseneq 7038 ssfirab 7040 fnfi 7045 fidcenumlemr 7064 fsumsplitsn 11765 fsumabs 11820 fsumiun 11832 fprodunsn 11959 fprod2dlemstep 11977 fsumcncntop 15083 dvmptfsum 15241 |
| Copyright terms: Public domain | W3C validator |