ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfi Unicode version

Theorem unsnfi 6884
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
Assertion
Ref Expression
unsnfi  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  u.  { B } )  e.  Fin )

Proof of Theorem unsnfi
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6727 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1008 . 2  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  E. n  e.  om  A  ~~  n
)
4 peano2 4572 . . . . 5  |-  ( n  e.  om  ->  suc  n  e.  om )
54ad2antrl 482 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  e.  om )
6 simprr 522 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
7 simpl2 991 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  B  e.  V )
8 simprl 521 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  n  e.  om )
9 en2sn 6779 . . . . . . 7  |-  ( ( B  e.  V  /\  n  e.  om )  ->  { B }  ~~  { n } )
107, 8, 9syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  { B }  ~~  {
n } )
11 disjsn 3638 . . . . . . . . 9  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
1211biimpri 132 . . . . . . . 8  |-  ( -.  B  e.  A  -> 
( A  i^i  { B } )  =  (/) )
13123ad2ant3 1010 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  i^i  { B } )  =  (/) )
1413adantr 274 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  i^i  { B } )  =  (/) )
15 nnord 4589 . . . . . . . . 9  |-  ( n  e.  om  ->  Ord  n )
16 ordirr 4519 . . . . . . . . 9  |-  ( Ord  n  ->  -.  n  e.  n )
1715, 16syl 14 . . . . . . . 8  |-  ( n  e.  om  ->  -.  n  e.  n )
18 disjsn 3638 . . . . . . . 8  |-  ( ( n  i^i  { n } )  =  (/)  <->  -.  n  e.  n )
1917, 18sylibr 133 . . . . . . 7  |-  ( n  e.  om  ->  (
n  i^i  { n } )  =  (/) )
2019ad2antrl 482 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( n  i^i  {
n } )  =  (/) )
21 unen 6782 . . . . . 6  |-  ( ( ( A  ~~  n  /\  { B }  ~~  { n } )  /\  ( ( A  i^i  { B } )  =  (/)  /\  ( n  i^i 
{ n } )  =  (/) ) )  -> 
( A  u.  { B } )  ~~  (
n  u.  { n } ) )
226, 10, 14, 20, 21syl22anc 1229 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  ~~  (
n  u.  { n } ) )
23 df-suc 4349 . . . . 5  |-  suc  n  =  ( n  u. 
{ n } )
2422, 23breqtrrdi 4024 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  ~~  suc  n )
25 breq2 3986 . . . . 5  |-  ( m  =  suc  n  -> 
( ( A  u.  { B } )  ~~  m 
<->  ( A  u.  { B } )  ~~  suc  n ) )
2625rspcev 2830 . . . 4  |-  ( ( suc  n  e.  om  /\  ( A  u.  { B } )  ~~  suc  n )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m )
275, 24, 26syl2anc 409 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
28 isfi 6727 . . 3  |-  ( ( A  u.  { B } )  e.  Fin  <->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
2927, 28sylibr 133 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  /\  ( n  e.  om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  e.  Fin )
303, 29rexlimddv 2588 1  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  -.  B  e.  A
)  ->  ( A  u.  { B } )  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445    u. cun 3114    i^i cin 3115   (/)c0 3409   {csn 3576   class class class wbr 3982   Ord word 4340   suc csuc 4343   omcom 4567    ~~ cen 6704   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  unfidisj  6887  fisseneq  6897  ssfirab  6899  fnfi  6902  fidcenumlemr  6920  fsumsplitsn  11351  fsumabs  11406  fsumiun  11418  fprodunsn  11545  fprod2dlemstep  11563  fsumcncntop  13196
  Copyright terms: Public domain W3C validator