Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unsnfi | Unicode version |
Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.) |
Ref | Expression |
---|---|
unsnfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6735 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | 3ad2ant1 1013 | . 2 |
4 | peano2 4577 | . . . . 5 | |
5 | 4 | ad2antrl 487 | . . . 4 |
6 | simprr 527 | . . . . . 6 | |
7 | simpl2 996 | . . . . . . 7 | |
8 | simprl 526 | . . . . . . 7 | |
9 | en2sn 6787 | . . . . . . 7 | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . 6 |
11 | disjsn 3643 | . . . . . . . . 9 | |
12 | 11 | biimpri 132 | . . . . . . . 8 |
13 | 12 | 3ad2ant3 1015 | . . . . . . 7 |
14 | 13 | adantr 274 | . . . . . 6 |
15 | nnord 4594 | . . . . . . . . 9 | |
16 | ordirr 4524 | . . . . . . . . 9 | |
17 | 15, 16 | syl 14 | . . . . . . . 8 |
18 | disjsn 3643 | . . . . . . . 8 | |
19 | 17, 18 | sylibr 133 | . . . . . . 7 |
20 | 19 | ad2antrl 487 | . . . . . 6 |
21 | unen 6790 | . . . . . 6 | |
22 | 6, 10, 14, 20, 21 | syl22anc 1234 | . . . . 5 |
23 | df-suc 4354 | . . . . 5 | |
24 | 22, 23 | breqtrrdi 4029 | . . . 4 |
25 | breq2 3991 | . . . . 5 | |
26 | 25 | rspcev 2834 | . . . 4 |
27 | 5, 24, 26 | syl2anc 409 | . . 3 |
28 | isfi 6735 | . . 3 | |
29 | 27, 28 | sylibr 133 | . 2 |
30 | 3, 29 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wrex 2449 cun 3119 cin 3120 c0 3414 csn 3581 class class class wbr 3987 word 4345 csuc 4348 com 4572 cen 6712 cfn 6714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-1o 6392 df-er 6509 df-en 6715 df-fin 6717 |
This theorem is referenced by: unfidisj 6895 fisseneq 6905 ssfirab 6907 fnfi 6910 fidcenumlemr 6928 fsumsplitsn 11360 fsumabs 11415 fsumiun 11427 fprodunsn 11554 fprod2dlemstep 11572 fsumcncntop 13309 |
Copyright terms: Public domain | W3C validator |