| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unsnfi | Unicode version | ||
| Description: Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.) |
| Ref | Expression |
|---|---|
| unsnfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6882 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | 3ad2ant1 1023 |
. 2
|
| 4 | peano2 4664 |
. . . . 5
| |
| 5 | 4 | ad2antrl 490 |
. . . 4
|
| 6 | simprr 531 |
. . . . . 6
| |
| 7 | simpl2 1006 |
. . . . . . 7
| |
| 8 | simprl 529 |
. . . . . . 7
| |
| 9 | en2sn 6936 |
. . . . . . 7
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . 6
|
| 11 | disjsn 3708 |
. . . . . . . . 9
| |
| 12 | 11 | biimpri 133 |
. . . . . . . 8
|
| 13 | 12 | 3ad2ant3 1025 |
. . . . . . 7
|
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | nnord 4681 |
. . . . . . . . 9
| |
| 16 | ordirr 4611 |
. . . . . . . . 9
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . 8
|
| 18 | disjsn 3708 |
. . . . . . . 8
| |
| 19 | 17, 18 | sylibr 134 |
. . . . . . 7
|
| 20 | 19 | ad2antrl 490 |
. . . . . 6
|
| 21 | unen 6939 |
. . . . . 6
| |
| 22 | 6, 10, 14, 20, 21 | syl22anc 1253 |
. . . . 5
|
| 23 | df-suc 4439 |
. . . . 5
| |
| 24 | 22, 23 | breqtrrdi 4104 |
. . . 4
|
| 25 | breq2 4066 |
. . . . 5
| |
| 26 | 25 | rspcev 2887 |
. . . 4
|
| 27 | 5, 24, 26 | syl2anc 411 |
. . 3
|
| 28 | isfi 6882 |
. . 3
| |
| 29 | 27, 28 | sylibr 134 |
. 2
|
| 30 | 3, 29 | rexlimddv 2633 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-1o 6532 df-er 6650 df-en 6858 df-fin 6860 |
| This theorem is referenced by: unfidisj 7052 tpfidceq 7060 fisseneq 7064 ssfirab 7066 fnfi 7071 fidcenumlemr 7090 fsumsplitsn 11887 fsumabs 11942 fsumiun 11954 fprodunsn 12081 fprod2dlemstep 12099 fsumcncntop 15206 dvmptfsum 15364 |
| Copyright terms: Public domain | W3C validator |