ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashp1i Unicode version

Theorem hashp1i 10992
Description: Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypotheses
Ref Expression
hashp1i.1  |-  A  e. 
om
hashp1i.2  |-  B  =  suc  A
hashp1i.3  |-  ( `  A
)  =  M
hashp1i.4  |-  ( M  +  1 )  =  N
Assertion
Ref Expression
hashp1i  |-  ( `  B
)  =  N

Proof of Theorem hashp1i
StepHypRef Expression
1 hashp1i.2 . . . 4  |-  B  =  suc  A
2 df-suc 4436 . . . 4  |-  suc  A  =  ( A  u.  { A } )
31, 2eqtri 2228 . . 3  |-  B  =  ( A  u.  { A } )
43fveq2i 5602 . 2  |-  ( `  B
)  =  ( `  ( A  u.  { A } ) )
5 hashp1i.1 . . . . 5  |-  A  e. 
om
6 nnfi 6995 . . . . 5  |-  ( A  e.  om  ->  A  e.  Fin )
75, 6ax-mp 5 . . . 4  |-  A  e. 
Fin
8 nnord 4678 . . . . 5  |-  ( A  e.  om  ->  Ord  A )
9 ordirr 4608 . . . . 5  |-  ( Ord 
A  ->  -.  A  e.  A )
105, 8, 9mp2b 8 . . . 4  |-  -.  A  e.  A
11 hashunsng 10989 . . . . 5  |-  ( A  e.  om  ->  (
( A  e.  Fin  /\ 
-.  A  e.  A
)  ->  ( `  ( A  u.  { A } ) )  =  ( ( `  A
)  +  1 ) ) )
125, 11ax-mp 5 . . . 4  |-  ( ( A  e.  Fin  /\  -.  A  e.  A
)  ->  ( `  ( A  u.  { A } ) )  =  ( ( `  A
)  +  1 ) )
137, 10, 12mp2an 426 . . 3  |-  ( `  ( A  u.  { A } ) )  =  ( ( `  A
)  +  1 )
14 hashp1i.3 . . . . 5  |-  ( `  A
)  =  M
1514oveq1i 5977 . . . 4  |-  ( ( `  A )  +  1 )  =  ( M  +  1 )
16 hashp1i.4 . . . 4  |-  ( M  +  1 )  =  N
1715, 16eqtri 2228 . . 3  |-  ( ( `  A )  +  1 )  =  N
1813, 17eqtri 2228 . 2  |-  ( `  ( A  u.  { A } ) )  =  N
194, 18eqtri 2228 1  |-  ( `  B
)  =  N
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    u. cun 3172   {csn 3643   Ord word 4427   suc csuc 4430   omcom 4656   ` cfv 5290  (class class class)co 5967   Fincfn 6850   1c1 7961    + caddc 7963  ♯chash 10957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-ihash 10958
This theorem is referenced by:  hash1  10993  hash2  10994  hash3  10995  hash4  10996
  Copyright terms: Public domain W3C validator