ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashp1i Unicode version

Theorem hashp1i 10349
Description: Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypotheses
Ref Expression
hashp1i.1  |-  A  e. 
om
hashp1i.2  |-  B  =  suc  A
hashp1i.3  |-  ( `  A
)  =  M
hashp1i.4  |-  ( M  +  1 )  =  N
Assertion
Ref Expression
hashp1i  |-  ( `  B
)  =  N

Proof of Theorem hashp1i
StepHypRef Expression
1 hashp1i.2 . . . 4  |-  B  =  suc  A
2 df-suc 4222 . . . 4  |-  suc  A  =  ( A  u.  { A } )
31, 2eqtri 2115 . . 3  |-  B  =  ( A  u.  { A } )
43fveq2i 5343 . 2  |-  ( `  B
)  =  ( `  ( A  u.  { A } ) )
5 hashp1i.1 . . . . 5  |-  A  e. 
om
6 nnfi 6668 . . . . 5  |-  ( A  e.  om  ->  A  e.  Fin )
75, 6ax-mp 7 . . . 4  |-  A  e. 
Fin
8 nnord 4454 . . . . 5  |-  ( A  e.  om  ->  Ord  A )
9 ordirr 4386 . . . . 5  |-  ( Ord 
A  ->  -.  A  e.  A )
105, 8, 9mp2b 8 . . . 4  |-  -.  A  e.  A
11 hashunsng 10346 . . . . 5  |-  ( A  e.  om  ->  (
( A  e.  Fin  /\ 
-.  A  e.  A
)  ->  ( `  ( A  u.  { A } ) )  =  ( ( `  A
)  +  1 ) ) )
125, 11ax-mp 7 . . . 4  |-  ( ( A  e.  Fin  /\  -.  A  e.  A
)  ->  ( `  ( A  u.  { A } ) )  =  ( ( `  A
)  +  1 ) )
137, 10, 12mp2an 418 . . 3  |-  ( `  ( A  u.  { A } ) )  =  ( ( `  A
)  +  1 )
14 hashp1i.3 . . . . 5  |-  ( `  A
)  =  M
1514oveq1i 5700 . . . 4  |-  ( ( `  A )  +  1 )  =  ( M  +  1 )
16 hashp1i.4 . . . 4  |-  ( M  +  1 )  =  N
1715, 16eqtri 2115 . . 3  |-  ( ( `  A )  +  1 )  =  N
1813, 17eqtri 2115 . 2  |-  ( `  ( A  u.  { A } ) )  =  N
194, 18eqtri 2115 1  |-  ( `  B
)  =  N
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1296    e. wcel 1445    u. cun 3011   {csn 3466   Ord word 4213   suc csuc 4216   omcom 4433   ` cfv 5049  (class class class)co 5690   Fincfn 6537   1c1 7448    + caddc 7450  ♯chash 10314
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-frec 6194  df-1o 6219  df-oadd 6223  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-fz 9574  df-ihash 10315
This theorem is referenced by:  hash1  10350  hash2  10351  hash3  10352  hash4  10353
  Copyright terms: Public domain W3C validator