| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovidig | GIF version | ||
| Description: The value of an operation class abstraction. Compare ovidi 6064. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovidig.1 | ⊢ ∃*𝑧𝜑 |
| ovidig.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| ovidig | ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5947 | . 2 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 2 | ovidig.1 | . . . . 5 ⊢ ∃*𝑧𝜑 | |
| 3 | 2 | funoprab 6045 | . . . 4 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
| 4 | ovidig.2 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
| 5 | 4 | funeqi 5292 | . . . 4 ⊢ (Fun 𝐹 ↔ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
| 6 | 3, 5 | mpbir 146 | . . 3 ⊢ Fun 𝐹 |
| 7 | oprabid 5976 | . . . . 5 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) | |
| 8 | 7 | biimpri 133 | . . . 4 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
| 9 | 8, 4 | eleqtrrdi 2299 | . . 3 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹) |
| 10 | funopfv 5618 | . . 3 ⊢ (Fun 𝐹 → (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧)) | |
| 11 | 6, 9, 10 | mpsyl 65 | . 2 ⊢ (𝜑 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧) |
| 12 | 1, 11 | eqtrid 2250 | 1 ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃*wmo 2055 ∈ wcel 2176 〈cop 3636 Fun wfun 5265 ‘cfv 5271 (class class class)co 5944 {coprab 5945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 |
| This theorem is referenced by: ovidi 6064 |
| Copyright terms: Public domain | W3C validator |