![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovidig | GIF version |
Description: The value of an operation class abstraction. Compare ovidi 5995. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ovidig.1 | ⊢ ∃*𝑧𝜑 |
ovidig.2 | ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
Ref | Expression |
---|---|
ovidig | ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5880 | . 2 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
2 | ovidig.1 | . . . . 5 ⊢ ∃*𝑧𝜑 | |
3 | 2 | funoprab 5977 | . . . 4 ⊢ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
4 | ovidig.2 | . . . . 5 ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} | |
5 | 4 | funeqi 5239 | . . . 4 ⊢ (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) |
6 | 3, 5 | mpbir 146 | . . 3 ⊢ Fun 𝐹 |
7 | oprabid 5909 | . . . . 5 ⊢ (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑) | |
8 | 7 | biimpri 133 | . . . 4 ⊢ (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) |
9 | 8, 4 | eleqtrrdi 2271 | . . 3 ⊢ (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹) |
10 | funopfv 5557 | . . 3 ⊢ (Fun 𝐹 → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)) | |
11 | 6, 9, 10 | mpsyl 65 | . 2 ⊢ (𝜑 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) |
12 | 1, 11 | eqtrid 2222 | 1 ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃*wmo 2027 ∈ wcel 2148 ⟨cop 3597 Fun wfun 5212 ‘cfv 5218 (class class class)co 5877 {coprab 5878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 |
This theorem is referenced by: ovidi 5995 |
Copyright terms: Public domain | W3C validator |