| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ovidig | GIF version | ||
| Description: The value of an operation class abstraction. Compare ovidi 6041. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| ovidig.1 | ⊢ ∃*𝑧𝜑 | 
| ovidig.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | 
| Ref | Expression | 
|---|---|
| ovidig | ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ov 5925 | . 2 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 2 | ovidig.1 | . . . . 5 ⊢ ∃*𝑧𝜑 | |
| 3 | 2 | funoprab 6022 | . . . 4 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | 
| 4 | ovidig.2 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
| 5 | 4 | funeqi 5279 | . . . 4 ⊢ (Fun 𝐹 ↔ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) | 
| 6 | 3, 5 | mpbir 146 | . . 3 ⊢ Fun 𝐹 | 
| 7 | oprabid 5954 | . . . . 5 ⊢ (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) | |
| 8 | 7 | biimpri 133 | . . . 4 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) | 
| 9 | 8, 4 | eleqtrrdi 2290 | . . 3 ⊢ (𝜑 → 〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹) | 
| 10 | funopfv 5600 | . . 3 ⊢ (Fun 𝐹 → (〈〈𝑥, 𝑦〉, 𝑧〉 ∈ 𝐹 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧)) | |
| 11 | 6, 9, 10 | mpsyl 65 | . 2 ⊢ (𝜑 → (𝐹‘〈𝑥, 𝑦〉) = 𝑧) | 
| 12 | 1, 11 | eqtrid 2241 | 1 ⊢ (𝜑 → (𝑥𝐹𝑦) = 𝑧) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∃*wmo 2046 ∈ wcel 2167 〈cop 3625 Fun wfun 5252 ‘cfv 5258 (class class class)co 5922 {coprab 5923 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 | 
| This theorem is referenced by: ovidi 6041 | 
| Copyright terms: Public domain | W3C validator |