ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovidig GIF version

Theorem ovidig 5881
Description: The value of an operation class abstraction. Compare ovidi 5882. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidig.1 ∃*𝑧𝜑
ovidig.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
ovidig (𝜑 → (𝑥𝐹𝑦) = 𝑧)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovidig
StepHypRef Expression
1 df-ov 5770 . 2 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
2 ovidig.1 . . . . 5 ∃*𝑧𝜑
32funoprab 5864 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 ovidig.2 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
54funeqi 5139 . . . 4 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
63, 5mpbir 145 . . 3 Fun 𝐹
7 oprabid 5796 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
87biimpri 132 . . . 4 (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
98, 4eleqtrrdi 2231 . . 3 (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹)
10 funopfv 5454 . . 3 (Fun 𝐹 → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
116, 9, 10mpsyl 65 . 2 (𝜑 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
121, 11syl5eq 2182 1 (𝜑 → (𝑥𝐹𝑦) = 𝑧)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  ∃*wmo 1998  cop 3525  Fun wfun 5112  cfv 5118  (class class class)co 5767  {coprab 5768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-oprab 5771
This theorem is referenced by:  ovidi  5882
  Copyright terms: Public domain W3C validator