ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovidig GIF version

Theorem ovidig 6044
Description: The value of an operation class abstraction. Compare ovidi 6045. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidig.1 ∃*𝑧𝜑
ovidig.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
ovidig (𝜑 → (𝑥𝐹𝑦) = 𝑧)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovidig
StepHypRef Expression
1 df-ov 5928 . 2 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
2 ovidig.1 . . . . 5 ∃*𝑧𝜑
32funoprab 6026 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 ovidig.2 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
54funeqi 5280 . . . 4 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
63, 5mpbir 146 . . 3 Fun 𝐹
7 oprabid 5957 . . . . 5 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
87biimpri 133 . . . 4 (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
98, 4eleqtrrdi 2290 . . 3 (𝜑 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹)
10 funopfv 5603 . . 3 (Fun 𝐹 → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐹 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
116, 9, 10mpsyl 65 . 2 (𝜑 → (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
121, 11eqtrid 2241 1 (𝜑 → (𝑥𝐹𝑦) = 𝑧)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ∃*wmo 2046  wcel 2167  cop 3626  Fun wfun 5253  cfv 5259  (class class class)co 5925  {coprab 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929
This theorem is referenced by:  ovidi  6045
  Copyright terms: Public domain W3C validator