ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkj Unicode version

Theorem caucvgprprlemnkj 7694
Description: Lemma for caucvgprpr 7714. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprprlemnkj.k  |-  ( ph  ->  K  e.  N. )
caucvgprprlemnkj.j  |-  ( ph  ->  J  e.  N. )
caucvgprprlemnkj.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprprlemnkj  |-  ( ph  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >.  <P  ( F `  K )  /\  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
Distinct variable groups:    k, F, n    J, p, q    u, J    J, l    K, p, q    K, l    u, K    S, p, q    u, n    n, l, k    u, k    u, q    p, l
Allowed substitution hints:    ph( u, k, n, q, p, l)    S( u, k, n, l)    F( u, q, p, l)    J( k, n)    K( k, n)

Proof of Theorem caucvgprprlemnkj
StepHypRef Expression
1 caucvgprpr.f . . 3  |-  ( ph  ->  F : N. --> P. )
2 caucvgprpr.cau . . 3  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
3 caucvgprprlemnkj.k . . 3  |-  ( ph  ->  K  e.  N. )
4 caucvgprprlemnkj.j . . 3  |-  ( ph  ->  J  e.  N. )
5 caucvgprprlemnkj.s . . 3  |-  ( ph  ->  S  e.  Q. )
61, 2, 3, 4, 5caucvgprprlemnkltj 7691 . 2  |-  ( (
ph  /\  K  <N  J )  ->  -.  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
71, 2, 3, 4, 5caucvgprprlemnkeqj 7692 . 2  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
81, 2, 3, 4, 5caucvgprprlemnjltk 7693 . 2  |-  ( (
ph  /\  J  <N  K )  ->  -.  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
9 pitri3or 7324 . . 3  |-  ( ( K  e.  N.  /\  J  e.  N. )  ->  ( K  <N  J  \/  K  =  J  \/  J  <N  K ) )
103, 4, 9syl2anc 411 . 2  |-  ( ph  ->  ( K  <N  J  \/  K  =  J  \/  J  <N  K ) )
116, 7, 8, 10mpjao3dan 1307 1  |-  ( ph  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >.  <P  ( F `  K )  /\  (
( F `  J
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ w3o 977    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   <.cop 3597   class class class wbr 4005   -->wf 5214   ` cfv 5218  (class class class)co 5878   1oc1o 6413   [cec 6536   N.cnpi 7274    <N clti 7277    ~Q ceq 7281   Q.cnq 7282    +Q cplq 7284   *Qcrq 7286    <Q cltq 7287   P.cnp 7293    +P. cpp 7295    <P cltp 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-1o 6420  df-2o 6421  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-pli 7307  df-mi 7308  df-lti 7309  df-plpq 7346  df-mpq 7347  df-enq 7349  df-nqqs 7350  df-plqqs 7351  df-mqqs 7352  df-1nqqs 7353  df-rq 7354  df-ltnqqs 7355  df-enq0 7426  df-nq0 7427  df-0nq0 7428  df-plq0 7429  df-mq0 7430  df-inp 7468  df-iplp 7470  df-iltp 7472
This theorem is referenced by:  caucvgprprlemdisj  7704
  Copyright terms: Public domain W3C validator