ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmfun Unicode version

Theorem pmfun 6754
Description: A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
pmfun  |-  ( F  e.  ( A  ^pm  B )  ->  Fun  F )

Proof of Theorem pmfun
StepHypRef Expression
1 elpmi 6753 . 2  |-  ( F  e.  ( A  ^pm  B )  ->  ( F : dom  F --> A  /\  dom  F  C_  B )
)
2 ffun 5427 . . 3  |-  ( F : dom  F --> A  ->  Fun  F )
32adantr 276 . 2  |-  ( ( F : dom  F --> A  /\  dom  F  C_  B )  ->  Fun  F )
41, 3syl 14 1  |-  ( F  e.  ( A  ^pm  B )  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175    C_ wss 3165   dom cdm 4674   Fun wfun 5264   -->wf 5266  (class class class)co 5943    ^pm cpm 6735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pm 6737
This theorem is referenced by:  ennnfonelemfun  12759  ennnfonelemf1  12760  lmbr2  14657  lmff  14692
  Copyright terms: Public domain W3C validator