ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpmi Unicode version

Theorem elpmi 6569
Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.)
Assertion
Ref Expression
elpmi  |-  ( F  e.  ( A  ^pm  B )  ->  ( F : dom  F --> A  /\  dom  F  C_  B )
)

Proof of Theorem elpmi
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6553 . . . 4  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
21elmpocl 5976 . . 3  |-  ( F  e.  ( A  ^pm  B )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
3 elpm2g 6567 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( F  e.  ( A  ^pm  B )  <->  ( F : dom  F --> A  /\  dom  F  C_  B ) ) )
42, 3syl 14 . 2  |-  ( F  e.  ( A  ^pm  B )  ->  ( F  e.  ( A  ^pm  B
)  <->  ( F : dom  F --> A  /\  dom  F 
C_  B ) ) )
54ibi 175 1  |-  ( F  e.  ( A  ^pm  B )  ->  ( F : dom  F --> A  /\  dom  F  C_  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1481   {crab 2421   _Vcvv 2689    C_ wss 3076   ~Pcpw 3515    X. cxp 4545   dom cdm 4547   Fun wfun 5125   -->wf 5127  (class class class)co 5782    ^pm cpm 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pm 6553
This theorem is referenced by:  pmfun  6570  pmresg  6578  ennnfonelemg  11952  ennnfonelemf1  11967  reldvg  12856  dvbsssg  12863  dvfgg  12865
  Copyright terms: Public domain W3C validator