ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpmi Unicode version

Theorem elpmi 6657
Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.)
Assertion
Ref Expression
elpmi  |-  ( F  e.  ( A  ^pm  B )  ->  ( F : dom  F --> A  /\  dom  F  C_  B )
)

Proof of Theorem elpmi
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6641 . . . 4  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
21elmpocl 6059 . . 3  |-  ( F  e.  ( A  ^pm  B )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
3 elpm2g 6655 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( F  e.  ( A  ^pm  B )  <->  ( F : dom  F --> A  /\  dom  F  C_  B ) ) )
42, 3syl 14 . 2  |-  ( F  e.  ( A  ^pm  B )  ->  ( F  e.  ( A  ^pm  B
)  <->  ( F : dom  F --> A  /\  dom  F 
C_  B ) ) )
54ibi 176 1  |-  ( F  e.  ( A  ^pm  B )  ->  ( F : dom  F --> A  /\  dom  F  C_  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2146   {crab 2457   _Vcvv 2735    C_ wss 3127   ~Pcpw 3572    X. cxp 4618   dom cdm 4620   Fun wfun 5202   -->wf 5204  (class class class)co 5865    ^pm cpm 6639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pm 6641
This theorem is referenced by:  pmfun  6658  pmresg  6666  ennnfonelemg  12369  ennnfonelemf1  12384  reldvg  13699  dvbsssg  13706  dvfgg  13708
  Copyright terms: Public domain W3C validator