ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemim Unicode version

Theorem fidcenumlemim 7061
Description: Lemma for fidcenum 7065. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.)
Assertion
Ref Expression
fidcenumlemim  |-  ( A  e.  Fin  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A ) )
Distinct variable groups:    A, f, n   
x, A, y

Proof of Theorem fidcenumlemim
StepHypRef Expression
1 fidceq 6973 . . . 4  |-  ( ( A  e.  Fin  /\  x  e.  A  /\  y  e.  A )  -> DECID  x  =  y )
213expb 1207 . . 3  |-  ( ( A  e.  Fin  /\  ( x  e.  A  /\  y  e.  A
) )  -> DECID  x  =  y
)
32ralrimivva 2589 . 2  |-  ( A  e.  Fin  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4 isfi 6859 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
5 ensym 6880 . . . . 5  |-  ( A 
~~  n  ->  n  ~~  A )
6 bren 6842 . . . . . 6  |-  ( n 
~~  A  <->  E. f 
f : n -1-1-onto-> A )
7 f1ofo 5536 . . . . . . 7  |-  ( f : n -1-1-onto-> A  ->  f :
n -onto-> A )
87eximi 1624 . . . . . 6  |-  ( E. f  f : n -1-1-onto-> A  ->  E. f  f : n -onto-> A )
96, 8sylbi 121 . . . . 5  |-  ( n 
~~  A  ->  E. f 
f : n -onto-> A )
105, 9syl 14 . . . 4  |-  ( A 
~~  n  ->  E. f 
f : n -onto-> A )
1110reximi 2604 . . 3  |-  ( E. n  e.  om  A  ~~  n  ->  E. n  e.  om  E. f  f : n -onto-> A )
124, 11sylbi 121 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  E. f  f : n -onto-> A )
133, 12jca 306 1  |-  ( A  e.  Fin  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836   E.wex 1516    e. wcel 2177   A.wral 2485   E.wrex 2486   class class class wbr 4047   omcom 4642   -onto->wfo 5274   -1-1-onto->wf1o 5275    ~~ cen 6832   Fincfn 6834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-er 6627  df-en 6835  df-fin 6837
This theorem is referenced by:  fidcenum  7065
  Copyright terms: Public domain W3C validator