| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidcenumlemim | Unicode version | ||
| Description: Lemma for fidcenum 7111. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.) |
| Ref | Expression |
|---|---|
| fidcenumlemim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidceq 7019 |
. . . 4
| |
| 2 | 1 | 3expb 1228 |
. . 3
|
| 3 | 2 | ralrimivva 2612 |
. 2
|
| 4 | isfi 6902 |
. . 3
| |
| 5 | ensym 6923 |
. . . . 5
| |
| 6 | bren 6885 |
. . . . . 6
| |
| 7 | f1ofo 5575 |
. . . . . . 7
| |
| 8 | 7 | eximi 1646 |
. . . . . 6
|
| 9 | 6, 8 | sylbi 121 |
. . . . 5
|
| 10 | 5, 9 | syl 14 |
. . . 4
|
| 11 | 10 | reximi 2627 |
. . 3
|
| 12 | 4, 11 | sylbi 121 |
. 2
|
| 13 | 3, 12 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-er 6670 df-en 6878 df-fin 6880 |
| This theorem is referenced by: fidcenum 7111 |
| Copyright terms: Public domain | W3C validator |