ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemim Unicode version

Theorem fidcenumlemim 7018
Description: Lemma for fidcenum 7022. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.)
Assertion
Ref Expression
fidcenumlemim  |-  ( A  e.  Fin  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A ) )
Distinct variable groups:    A, f, n   
x, A, y

Proof of Theorem fidcenumlemim
StepHypRef Expression
1 fidceq 6930 . . . 4  |-  ( ( A  e.  Fin  /\  x  e.  A  /\  y  e.  A )  -> DECID  x  =  y )
213expb 1206 . . 3  |-  ( ( A  e.  Fin  /\  ( x  e.  A  /\  y  e.  A
) )  -> DECID  x  =  y
)
32ralrimivva 2579 . 2  |-  ( A  e.  Fin  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4 isfi 6820 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
5 ensym 6840 . . . . 5  |-  ( A 
~~  n  ->  n  ~~  A )
6 bren 6806 . . . . . 6  |-  ( n 
~~  A  <->  E. f 
f : n -1-1-onto-> A )
7 f1ofo 5511 . . . . . . 7  |-  ( f : n -1-1-onto-> A  ->  f :
n -onto-> A )
87eximi 1614 . . . . . 6  |-  ( E. f  f : n -1-1-onto-> A  ->  E. f  f : n -onto-> A )
96, 8sylbi 121 . . . . 5  |-  ( n 
~~  A  ->  E. f 
f : n -onto-> A )
105, 9syl 14 . . . 4  |-  ( A 
~~  n  ->  E. f 
f : n -onto-> A )
1110reximi 2594 . . 3  |-  ( E. n  e.  om  A  ~~  n  ->  E. n  e.  om  E. f  f : n -onto-> A )
124, 11sylbi 121 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  E. f  f : n -onto-> A )
133, 12jca 306 1  |-  ( A  e.  Fin  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4033   omcom 4626   -onto->wfo 5256   -1-1-onto->wf1o 5257    ~~ cen 6797   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  fidcenum  7022
  Copyright terms: Public domain W3C validator