ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preimaf1ofi GIF version

Theorem preimaf1ofi 6928
Description: The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
preimaf1ofi.ss (𝜑𝐶𝐵)
preimaf1ofi.f (𝜑𝐹:𝐴1-1-onto𝐵)
preimaf1ofi.c (𝜑𝐶 ∈ Fin)
Assertion
Ref Expression
preimaf1ofi (𝜑 → (𝐹𝐶) ∈ Fin)

Proof of Theorem preimaf1ofi
StepHypRef Expression
1 preimaf1ofi.c . 2 (𝜑𝐶 ∈ Fin)
2 preimaf1ofi.f . . . 4 (𝜑𝐹:𝐴1-1-onto𝐵)
3 f1ocnv 5455 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
4 f1of1 5441 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵1-1𝐴)
52, 3, 43syl 17 . . 3 (𝜑𝐹:𝐵1-1𝐴)
6 preimaf1ofi.ss . . 3 (𝜑𝐶𝐵)
7 f1ores 5457 . . 3 ((𝐹:𝐵1-1𝐴𝐶𝐵) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
85, 6, 7syl2anc 409 . 2 (𝜑 → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
9 f1ofi 6920 . 2 ((𝐶 ∈ Fin ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → (𝐹𝐶) ∈ Fin)
101, 8, 9syl2anc 409 1 (𝜑 → (𝐹𝐶) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wss 3121  ccnv 4610  cres 4613  cima 4614  1-1wf1 5195  1-1-ontowf1o 5197  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  fisumss  11355  fprodssdc  11553
  Copyright terms: Public domain W3C validator