Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > preimaf1ofi | GIF version |
Description: The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.) |
Ref | Expression |
---|---|
preimaf1ofi.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
preimaf1ofi.f | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
preimaf1ofi.c | ⊢ (𝜑 → 𝐶 ∈ Fin) |
Ref | Expression |
---|---|
preimaf1ofi | ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimaf1ofi.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Fin) | |
2 | preimaf1ofi.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
3 | f1ocnv 5445 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
4 | f1of1 5431 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵–1-1→𝐴) | |
5 | 2, 3, 4 | 3syl 17 | . . 3 ⊢ (𝜑 → ◡𝐹:𝐵–1-1→𝐴) |
6 | preimaf1ofi.ss | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
7 | f1ores 5447 | . . 3 ⊢ ((◡𝐹:𝐵–1-1→𝐴 ∧ 𝐶 ⊆ 𝐵) → (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) | |
8 | 5, 6, 7 | syl2anc 409 | . 2 ⊢ (𝜑 → (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) |
9 | f1ofi 6908 | . 2 ⊢ ((𝐶 ∈ Fin ∧ (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) → (◡𝐹 “ 𝐶) ∈ Fin) | |
10 | 1, 8, 9 | syl2anc 409 | 1 ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ⊆ wss 3116 ◡ccnv 4603 ↾ cres 4606 “ cima 4607 –1-1→wf1 5185 –1-1-onto→wf1o 5187 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: fisumss 11333 fprodssdc 11531 |
Copyright terms: Public domain | W3C validator |