| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preimaf1ofi | GIF version | ||
| Description: The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| preimaf1ofi.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| preimaf1ofi.f | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| preimaf1ofi.c | ⊢ (𝜑 → 𝐶 ∈ Fin) |
| Ref | Expression |
|---|---|
| preimaf1ofi | ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimaf1ofi.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Fin) | |
| 2 | preimaf1ofi.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
| 3 | f1ocnv 5544 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 4 | f1of1 5530 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵–1-1→𝐴) | |
| 5 | 2, 3, 4 | 3syl 17 | . . 3 ⊢ (𝜑 → ◡𝐹:𝐵–1-1→𝐴) |
| 6 | preimaf1ofi.ss | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
| 7 | f1ores 5546 | . . 3 ⊢ ((◡𝐹:𝐵–1-1→𝐴 ∧ 𝐶 ⊆ 𝐵) → (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) | |
| 8 | 5, 6, 7 | syl2anc 411 | . 2 ⊢ (𝜑 → (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) |
| 9 | f1ofi 7057 | . 2 ⊢ ((𝐶 ∈ Fin ∧ (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) → (◡𝐹 “ 𝐶) ∈ Fin) | |
| 10 | 1, 8, 9 | syl2anc 411 | 1 ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3168 ◡ccnv 4679 ↾ cres 4682 “ cima 4683 –1-1→wf1 5274 –1-1-onto→wf1o 5276 Fincfn 6837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-er 6630 df-en 6838 df-fin 6840 |
| This theorem is referenced by: fisumss 11753 fprodssdc 11951 |
| Copyright terms: Public domain | W3C validator |