ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preimaf1ofi GIF version

Theorem preimaf1ofi 6963
Description: The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
preimaf1ofi.ss (𝜑𝐶𝐵)
preimaf1ofi.f (𝜑𝐹:𝐴1-1-onto𝐵)
preimaf1ofi.c (𝜑𝐶 ∈ Fin)
Assertion
Ref Expression
preimaf1ofi (𝜑 → (𝐹𝐶) ∈ Fin)

Proof of Theorem preimaf1ofi
StepHypRef Expression
1 preimaf1ofi.c . 2 (𝜑𝐶 ∈ Fin)
2 preimaf1ofi.f . . . 4 (𝜑𝐹:𝐴1-1-onto𝐵)
3 f1ocnv 5486 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
4 f1of1 5472 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵1-1𝐴)
52, 3, 43syl 17 . . 3 (𝜑𝐹:𝐵1-1𝐴)
6 preimaf1ofi.ss . . 3 (𝜑𝐶𝐵)
7 f1ores 5488 . . 3 ((𝐹:𝐵1-1𝐴𝐶𝐵) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
85, 6, 7syl2anc 411 . 2 (𝜑 → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
9 f1ofi 6955 . 2 ((𝐶 ∈ Fin ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → (𝐹𝐶) ∈ Fin)
101, 8, 9syl2anc 411 1 (𝜑 → (𝐹𝐶) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2158  wss 3141  ccnv 4637  cres 4640  cima 4641  1-1wf1 5225  1-1-ontowf1o 5227  Fincfn 6753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-er 6548  df-en 6754  df-fin 6756
This theorem is referenced by:  fisumss  11413  fprodssdc  11611
  Copyright terms: Public domain W3C validator