| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preimaf1ofi | GIF version | ||
| Description: The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| preimaf1ofi.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| preimaf1ofi.f | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| preimaf1ofi.c | ⊢ (𝜑 → 𝐶 ∈ Fin) |
| Ref | Expression |
|---|---|
| preimaf1ofi | ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimaf1ofi.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Fin) | |
| 2 | preimaf1ofi.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
| 3 | f1ocnv 5581 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 4 | f1of1 5567 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵–1-1→𝐴) | |
| 5 | 2, 3, 4 | 3syl 17 | . . 3 ⊢ (𝜑 → ◡𝐹:𝐵–1-1→𝐴) |
| 6 | preimaf1ofi.ss | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
| 7 | f1ores 5583 | . . 3 ⊢ ((◡𝐹:𝐵–1-1→𝐴 ∧ 𝐶 ⊆ 𝐵) → (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) | |
| 8 | 5, 6, 7 | syl2anc 411 | . 2 ⊢ (𝜑 → (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) |
| 9 | f1ofi 7098 | . 2 ⊢ ((𝐶 ∈ Fin ∧ (◡𝐹 ↾ 𝐶):𝐶–1-1-onto→(◡𝐹 “ 𝐶)) → (◡𝐹 “ 𝐶) ∈ Fin) | |
| 10 | 1, 8, 9 | syl2anc 411 | 1 ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 ◡ccnv 4715 ↾ cres 4718 “ cima 4719 –1-1→wf1 5311 –1-1-onto→wf1o 5313 Fincfn 6877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-er 6670 df-en 6878 df-fin 6880 |
| This theorem is referenced by: fisumss 11889 fprodssdc 12087 |
| Copyright terms: Public domain | W3C validator |