ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idssfct Unicode version

Theorem 1idssfct 12133
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
1idssfct  |-  ( N  e.  NN  ->  { 1 ,  N }  C_  { n  e.  NN  |  n  ||  N } )
Distinct variable group:    n, N

Proof of Theorem 1idssfct
StepHypRef Expression
1 1nn 8948 . . 3  |-  1  e.  NN
2 nnz 9290 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
3 1dvds 11830 . . . 4  |-  ( N  e.  ZZ  ->  1  ||  N )
42, 3syl 14 . . 3  |-  ( N  e.  NN  ->  1  ||  N )
5 breq1 4021 . . . . 5  |-  ( n  =  1  ->  (
n  ||  N  <->  1  ||  N ) )
65elrab 2908 . . . 4  |-  ( 1  e.  { n  e.  NN  |  n  ||  N }  <->  ( 1  e.  NN  /\  1  ||  N ) )
76biimpri 133 . . 3  |-  ( ( 1  e.  NN  /\  1  ||  N )  -> 
1  e.  { n  e.  NN  |  n  ||  N } )
81, 4, 7sylancr 414 . 2  |-  ( N  e.  NN  ->  1  e.  { n  e.  NN  |  n  ||  N }
)
9 iddvds 11829 . . . 4  |-  ( N  e.  ZZ  ->  N  ||  N )
102, 9syl 14 . . 3  |-  ( N  e.  NN  ->  N  ||  N )
11 breq1 4021 . . . . 5  |-  ( n  =  N  ->  (
n  ||  N  <->  N  ||  N
) )
1211elrab 2908 . . . 4  |-  ( N  e.  { n  e.  NN  |  n  ||  N }  <->  ( N  e.  NN  /\  N  ||  N ) )
1312biimpri 133 . . 3  |-  ( ( N  e.  NN  /\  N  ||  N )  ->  N  e.  { n  e.  NN  |  n  ||  N } )
1410, 13mpdan 421 . 2  |-  ( N  e.  NN  ->  N  e.  { n  e.  NN  |  n  ||  N }
)
15 prssi 3765 . 2  |-  ( ( 1  e.  { n  e.  NN  |  n  ||  N }  /\  N  e. 
{ n  e.  NN  |  n  ||  N }
)  ->  { 1 ,  N }  C_  { n  e.  NN  |  n  ||  N } )
168, 14, 15syl2anc 411 1  |-  ( N  e.  NN  ->  { 1 ,  N }  C_  { n  e.  NN  |  n  ||  N } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160   {crab 2472    C_ wss 3144   {cpr 3608   class class class wbr 4018   1c1 7830   NNcn 8937   ZZcz 9271    || cdvds 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-z 9272  df-dvds 11813
This theorem is referenced by:  isprm2  12135
  Copyright terms: Public domain W3C validator