| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relcnvfi | GIF version | ||
| Description: If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| relcnvfi | ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 5121 | . . . . 5 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
| 2 | 1 | biimpi 120 | . . . 4 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡◡𝐴 = 𝐴) |
| 4 | simpr 110 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
| 5 | 3, 4 | eqeltrd 2273 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡◡𝐴 ∈ Fin) |
| 6 | relcnv 5048 | . . . 4 ⊢ Rel ◡𝐴 | |
| 7 | cnvexg 5208 | . . . 4 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ V) | |
| 8 | cnven 6876 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
| 9 | 6, 7, 8 | sylancr 414 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ≈ ◡◡𝐴) |
| 10 | 9 | adantl 277 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ≈ ◡◡𝐴) |
| 11 | enfii 6944 | . 2 ⊢ ((◡◡𝐴 ∈ Fin ∧ ◡𝐴 ≈ ◡◡𝐴) → ◡𝐴 ∈ Fin) | |
| 12 | 5, 10, 11 | syl2anc 411 | 1 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 class class class wbr 4034 ◡ccnv 4663 Rel wrel 4669 ≈ cen 6806 Fincfn 6808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-er 6601 df-en 6809 df-fin 6811 |
| This theorem is referenced by: funrnfi 7017 fsumcnv 11619 fprodcnv 11807 |
| Copyright terms: Public domain | W3C validator |