ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvfi GIF version

Theorem relcnvfi 6906
Description: If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
Assertion
Ref Expression
relcnvfi ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)

Proof of Theorem relcnvfi
StepHypRef Expression
1 dfrel2 5054 . . . . 5 (Rel 𝐴𝐴 = 𝐴)
21biimpi 119 . . . 4 (Rel 𝐴𝐴 = 𝐴)
32adantr 274 . . 3 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 = 𝐴)
4 simpr 109 . . 3 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
53, 4eqeltrd 2243 . 2 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
6 relcnv 4982 . . . 4 Rel 𝐴
7 cnvexg 5141 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ V)
8 cnven 6774 . . . 4 ((Rel 𝐴𝐴 ∈ V) → 𝐴𝐴)
96, 7, 8sylancr 411 . . 3 (𝐴 ∈ Fin → 𝐴𝐴)
109adantl 275 . 2 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴𝐴)
11 enfii 6840 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐴) → 𝐴 ∈ Fin)
125, 10, 11syl2anc 409 1 ((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726   class class class wbr 3982  ccnv 4603  Rel wrel 4609  cen 6704  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  funrnfi  6907  fsumcnv  11378  fprodcnv  11566
  Copyright terms: Public domain W3C validator