![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcnvfi | GIF version |
Description: If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.) |
Ref | Expression |
---|---|
relcnvfi | ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 5081 | . . . . 5 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
2 | 1 | biimpi 120 | . . . 4 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
3 | 2 | adantr 276 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡◡𝐴 = 𝐴) |
4 | simpr 110 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
5 | 3, 4 | eqeltrd 2254 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡◡𝐴 ∈ Fin) |
6 | relcnv 5008 | . . . 4 ⊢ Rel ◡𝐴 | |
7 | cnvexg 5168 | . . . 4 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ V) | |
8 | cnven 6810 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
9 | 6, 7, 8 | sylancr 414 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ≈ ◡◡𝐴) |
10 | 9 | adantl 277 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ≈ ◡◡𝐴) |
11 | enfii 6876 | . 2 ⊢ ((◡◡𝐴 ∈ Fin ∧ ◡𝐴 ≈ ◡◡𝐴) → ◡𝐴 ∈ Fin) | |
12 | 5, 10, 11 | syl2anc 411 | 1 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2739 class class class wbr 4005 ◡ccnv 4627 Rel wrel 4633 ≈ cen 6740 Fincfn 6742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6143 df-2nd 6144 df-er 6537 df-en 6743 df-fin 6745 |
This theorem is referenced by: funrnfi 6943 fsumcnv 11447 fprodcnv 11635 |
Copyright terms: Public domain | W3C validator |