Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relcnvfi | GIF version |
Description: If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.) |
Ref | Expression |
---|---|
relcnvfi | ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 5054 | . . . . 5 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
2 | 1 | biimpi 119 | . . . 4 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
3 | 2 | adantr 274 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡◡𝐴 = 𝐴) |
4 | simpr 109 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
5 | 3, 4 | eqeltrd 2243 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡◡𝐴 ∈ Fin) |
6 | relcnv 4982 | . . . 4 ⊢ Rel ◡𝐴 | |
7 | cnvexg 5141 | . . . 4 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ V) | |
8 | cnven 6774 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
9 | 6, 7, 8 | sylancr 411 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ≈ ◡◡𝐴) |
10 | 9 | adantl 275 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ≈ ◡◡𝐴) |
11 | enfii 6840 | . 2 ⊢ ((◡◡𝐴 ∈ Fin ∧ ◡𝐴 ≈ ◡◡𝐴) → ◡𝐴 ∈ Fin) | |
12 | 5, 10, 11 | syl2anc 409 | 1 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 class class class wbr 3982 ◡ccnv 4603 Rel wrel 4609 ≈ cen 6704 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: funrnfi 6907 fsumcnv 11378 fprodcnv 11566 |
Copyright terms: Public domain | W3C validator |