![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relcnvfi | GIF version |
Description: If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.) |
Ref | Expression |
---|---|
relcnvfi | ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 5117 | . . . . 5 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
2 | 1 | biimpi 120 | . . . 4 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
3 | 2 | adantr 276 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡◡𝐴 = 𝐴) |
4 | simpr 110 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
5 | 3, 4 | eqeltrd 2270 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡◡𝐴 ∈ Fin) |
6 | relcnv 5044 | . . . 4 ⊢ Rel ◡𝐴 | |
7 | cnvexg 5204 | . . . 4 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ V) | |
8 | cnven 6864 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
9 | 6, 7, 8 | sylancr 414 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ≈ ◡◡𝐴) |
10 | 9 | adantl 277 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ≈ ◡◡𝐴) |
11 | enfii 6932 | . 2 ⊢ ((◡◡𝐴 ∈ Fin ∧ ◡𝐴 ≈ ◡◡𝐴) → ◡𝐴 ∈ Fin) | |
12 | 5, 10, 11 | syl2anc 411 | 1 ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 class class class wbr 4030 ◡ccnv 4659 Rel wrel 4665 ≈ cen 6794 Fincfn 6796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1st 6195 df-2nd 6196 df-er 6589 df-en 6797 df-fin 6799 |
This theorem is referenced by: funrnfi 7003 fsumcnv 11583 fprodcnv 11771 |
Copyright terms: Public domain | W3C validator |