| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressn | GIF version | ||
| Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| ressn | ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5006 | . 2 ⊢ Rel (𝐴 ↾ {𝐵}) | |
| 2 | relxp 4802 | . 2 ⊢ Rel ({𝐵} × (𝐴 “ {𝐵})) | |
| 3 | ancom 266 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 4 | vex 2779 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | vex 2779 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | elimasn 5068 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 7 | elsni 3661 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 8 | 7 | sneqd 3656 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐵} → {𝑥} = {𝐵}) |
| 9 | 8 | imaeq2d 5041 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵})) |
| 10 | 9 | eleq2d 2277 | . . . . . 6 ⊢ (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 11 | 6, 10 | bitr3id 194 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 12 | 11 | pm5.32i 454 | . . . 4 ⊢ ((𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 13 | 3, 12 | bitri 184 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 14 | 5 | opelres 4983 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵})) |
| 15 | opelxp 4723 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) | |
| 16 | 13, 14, 15 | 3bitr4i 212 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵}))) |
| 17 | 1, 2, 16 | eqrelriiv 4787 | 1 ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2178 {csn 3643 〈cop 3646 × cxp 4691 ↾ cres 4695 “ cima 4696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |