ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressn GIF version

Theorem ressn 5149
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
ressn (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))

Proof of Theorem ressn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4917 . 2 Rel (𝐴 ↾ {𝐵})
2 relxp 4718 . 2 Rel ({𝐵} × (𝐴 “ {𝐵}))
3 ancom 264 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
4 vex 2733 . . . . . . 7 𝑥 ∈ V
5 vex 2733 . . . . . . 7 𝑦 ∈ V
64, 5elimasn 4976 . . . . . 6 (𝑦 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
7 elsni 3599 . . . . . . . . 9 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
87sneqd 3594 . . . . . . . 8 (𝑥 ∈ {𝐵} → {𝑥} = {𝐵})
98imaeq2d 4951 . . . . . . 7 (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵}))
109eleq2d 2240 . . . . . 6 (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵})))
116, 10bitr3id 193 . . . . 5 (𝑥 ∈ {𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 ∈ (𝐴 “ {𝐵})))
1211pm5.32i 451 . . . 4 ((𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
133, 12bitri 183 . . 3 ((⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
145opelres 4894 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ {𝐵}))
15 opelxp 4639 . . 3 (⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
1613, 14, 153bitr4i 211 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ ⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})))
171, 2, 16eqrelriiv 4703 1 (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  {csn 3581  cop 3584   × cxp 4607  cres 4611  cima 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-xp 4615  df-rel 4616  df-cnv 4617  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator