ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressn GIF version

Theorem ressn 5210
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
ressn (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))

Proof of Theorem ressn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4974 . 2 Rel (𝐴 ↾ {𝐵})
2 relxp 4772 . 2 Rel ({𝐵} × (𝐴 “ {𝐵}))
3 ancom 266 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
4 vex 2766 . . . . . . 7 𝑥 ∈ V
5 vex 2766 . . . . . . 7 𝑦 ∈ V
64, 5elimasn 5036 . . . . . 6 (𝑦 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
7 elsni 3640 . . . . . . . . 9 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
87sneqd 3635 . . . . . . . 8 (𝑥 ∈ {𝐵} → {𝑥} = {𝐵})
98imaeq2d 5009 . . . . . . 7 (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵}))
109eleq2d 2266 . . . . . 6 (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵})))
116, 10bitr3id 194 . . . . 5 (𝑥 ∈ {𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 ∈ (𝐴 “ {𝐵})))
1211pm5.32i 454 . . . 4 ((𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
133, 12bitri 184 . . 3 ((⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
145opelres 4951 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ {𝐵}))
15 opelxp 4693 . . 3 (⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
1613, 14, 153bitr4i 212 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ ⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})))
171, 2, 16eqrelriiv 4757 1 (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2167  {csn 3622  cop 3625   × cxp 4661  cres 4665  cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator