![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressn | GIF version |
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
ressn | ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4754 | . 2 ⊢ Rel (𝐴 ↾ {𝐵}) | |
2 | relxp 4560 | . 2 ⊢ Rel ({𝐵} × (𝐴 “ {𝐵})) | |
3 | ancom 263 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
4 | vex 2623 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
5 | vex 2623 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | elimasn 4812 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
7 | elsni 3468 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
8 | 7 | sneqd 3463 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐵} → {𝑥} = {𝐵}) |
9 | 8 | imaeq2d 4787 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵})) |
10 | 9 | eleq2d 2158 | . . . . . 6 ⊢ (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
11 | 6, 10 | syl5bbr 193 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
12 | 11 | pm5.32i 443 | . . . 4 ⊢ ((𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) |
13 | 3, 12 | bitri 183 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) |
14 | 5 | opelres 4731 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵})) |
15 | opelxp 4481 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) | |
16 | 13, 14, 15 | 3bitr4i 211 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵}))) |
17 | 1, 2, 16 | eqrelriiv 4545 | 1 ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1290 ∈ wcel 1439 {csn 3450 〈cop 3453 × cxp 4450 ↾ cres 4454 “ cima 4455 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-sbc 2842 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-br 3852 df-opab 3906 df-xp 4458 df-rel 4459 df-cnv 4460 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |