| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressn | GIF version | ||
| Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| ressn | ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4974 | . 2 ⊢ Rel (𝐴 ↾ {𝐵}) | |
| 2 | relxp 4772 | . 2 ⊢ Rel ({𝐵} × (𝐴 “ {𝐵})) | |
| 3 | ancom 266 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 4 | vex 2766 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | vex 2766 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | elimasn 5036 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 7 | elsni 3640 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 8 | 7 | sneqd 3635 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐵} → {𝑥} = {𝐵}) |
| 9 | 8 | imaeq2d 5009 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵})) |
| 10 | 9 | eleq2d 2266 | . . . . . 6 ⊢ (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 11 | 6, 10 | bitr3id 194 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 12 | 11 | pm5.32i 454 | . . . 4 ⊢ ((𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 13 | 3, 12 | bitri 184 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 14 | 5 | opelres 4951 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵})) |
| 15 | opelxp 4693 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) | |
| 16 | 13, 14, 15 | 3bitr4i 212 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵}))) |
| 17 | 1, 2, 16 | eqrelriiv 4757 | 1 ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 {csn 3622 〈cop 3625 × cxp 4661 ↾ cres 4665 “ cima 4666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |