| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressn | GIF version | ||
| Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| ressn | ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4987 | . 2 ⊢ Rel (𝐴 ↾ {𝐵}) | |
| 2 | relxp 4784 | . 2 ⊢ Rel ({𝐵} × (𝐴 “ {𝐵})) | |
| 3 | ancom 266 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 4 | vex 2775 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | vex 2775 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | elimasn 5049 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 7 | elsni 3651 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 8 | 7 | sneqd 3646 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐵} → {𝑥} = {𝐵}) |
| 9 | 8 | imaeq2d 5022 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵})) |
| 10 | 9 | eleq2d 2275 | . . . . . 6 ⊢ (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 11 | 6, 10 | bitr3id 194 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 12 | 11 | pm5.32i 454 | . . . 4 ⊢ ((𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 13 | 3, 12 | bitri 184 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) |
| 14 | 5 | opelres 4964 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ {𝐵})) |
| 15 | opelxp 4705 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) | |
| 16 | 13, 14, 15 | 3bitr4i 212 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵}))) |
| 17 | 1, 2, 16 | eqrelriiv 4769 | 1 ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2176 {csn 3633 〈cop 3636 × cxp 4673 ↾ cres 4677 “ cima 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |