ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restuni2 Unicode version

Theorem restuni2 12516
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
restin.1  |-  X  = 
U. J
Assertion
Ref Expression
restuni2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( A  i^i  X
)  =  U. ( Jt  A ) )

Proof of Theorem restuni2
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  J  e.  Top )
2 inss2 3324 . . 3  |-  ( A  i^i  X )  C_  X
3 restin.1 . . . 4  |-  X  = 
U. J
43restuni 12511 . . 3  |-  ( ( J  e.  Top  /\  ( A  i^i  X ) 
C_  X )  -> 
( A  i^i  X
)  =  U. ( Jt  ( A  i^i  X ) ) )
51, 2, 4sylancl 410 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( A  i^i  X
)  =  U. ( Jt  ( A  i^i  X ) ) )
63restin 12515 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  X
) ) )
76unieqd 3779 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  U. ( Jt  A )  =  U. ( Jt  ( A  i^i  X ) ) )
85, 7eqtr4d 2190 1  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( A  i^i  X
)  =  U. ( Jt  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125    i^i cin 3097    C_ wss 3098   U.cuni 3768  (class class class)co 5814   ↾t crest 12290   Topctop 12334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-rest 12292  df-topgen 12311  df-top 12335  df-topon 12348  df-bases 12380
This theorem is referenced by:  resttopon2  12517
  Copyright terms: Public domain W3C validator