ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restuni Unicode version

Theorem restuni 14840
Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
restuni.1  |-  X  = 
U. J
Assertion
Ref Expression
restuni  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  A  =  U. ( Jt  A ) )

Proof of Theorem restuni
StepHypRef Expression
1 restuni.1 . . . 4  |-  X  = 
U. J
21toptopon 14686 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3 resttopon 14839 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
42, 3sylanb 284 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( Jt  A )  e.  (TopOn `  A ) )
5 toponuni 14683 . 2  |-  ( ( Jt  A )  e.  (TopOn `  A )  ->  A  =  U. ( Jt  A ) )
64, 5syl 14 1  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  A  =  U. ( Jt  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    C_ wss 3197   U.cuni 3887   ` cfv 5317  (class class class)co 6000   ↾t crest 13267   Topctop 14665  TopOnctopon 14678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-rest 13269  df-topgen 13288  df-top 14666  df-topon 14679  df-bases 14711
This theorem is referenced by:  restuni2  14845  restopn2  14851  reldvg  15347
  Copyright terms: Public domain W3C validator