ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restuni2 GIF version

Theorem restuni2 14154
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
restin.1 𝑋 = 𝐽
Assertion
Ref Expression
restuni2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴𝑋) = (𝐽t 𝐴))

Proof of Theorem restuni2
StepHypRef Expression
1 simpl 109 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → 𝐽 ∈ Top)
2 inss2 3371 . . 3 (𝐴𝑋) ⊆ 𝑋
3 restin.1 . . . 4 𝑋 = 𝐽
43restuni 14149 . . 3 ((𝐽 ∈ Top ∧ (𝐴𝑋) ⊆ 𝑋) → (𝐴𝑋) = (𝐽t (𝐴𝑋)))
51, 2, 4sylancl 413 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴𝑋) = (𝐽t (𝐴𝑋)))
63restin 14153 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) = (𝐽t (𝐴𝑋)))
76unieqd 3835 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) = (𝐽t (𝐴𝑋)))
85, 7eqtr4d 2225 1 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴𝑋) = (𝐽t 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  cin 3143  wss 3144   cuni 3824  (class class class)co 5897  t crest 12747  Topctop 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-rest 12749  df-topgen 12768  df-top 13975  df-topon 13988  df-bases 14020
This theorem is referenced by:  resttopon2  14155
  Copyright terms: Public domain W3C validator