ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resttopon2 Unicode version

Theorem resttopon2 12972
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( Jt  A )  e.  (TopOn `  ( A  i^i  X
) ) )

Proof of Theorem resttopon2
StepHypRef Expression
1 topontop 12806 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 resttop 12964 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
31, 2sylan 281 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
4 toponuni 12807 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
54ineq2d 3328 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( A  i^i  X )  =  ( A  i^i  U. J
) )
65adantr 274 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( A  i^i  X )  =  ( A  i^i  U. J ) )
7 eqid 2170 . . . . 5  |-  U. J  =  U. J
87restuni2 12971 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( A  i^i  U. J )  =  U. ( Jt  A ) )
91, 8sylan 281 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( A  i^i  U. J )  =  U. ( Jt  A ) )
106, 9eqtrd 2203 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( A  i^i  X )  = 
U. ( Jt  A ) )
11 istopon 12805 . 2  |-  ( ( Jt  A )  e.  (TopOn `  ( A  i^i  X
) )  <->  ( ( Jt  A )  e.  Top  /\  ( A  i^i  X
)  =  U. ( Jt  A ) ) )
123, 10, 11sylanbrc 415 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( Jt  A )  e.  (TopOn `  ( A  i^i  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    i^i cin 3120   U.cuni 3796   ` cfv 5198  (class class class)co 5853   ↾t crest 12579   Topctop 12789  TopOnctopon 12802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-rest 12581  df-topgen 12600  df-top 12790  df-topon 12803  df-bases 12835
This theorem is referenced by:  lmss  13040
  Copyright terms: Public domain W3C validator