ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restin Unicode version

Theorem restin 14733
Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
restin.1  |-  X  = 
U. J
Assertion
Ref Expression
restin  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  X
) ) )

Proof of Theorem restin
StepHypRef Expression
1 restin.1 . . . . 5  |-  X  = 
U. J
2 uniexg 4499 . . . . 5  |-  ( J  e.  V  ->  U. J  e.  _V )
31, 2eqeltrid 2293 . . . 4  |-  ( J  e.  V  ->  X  e.  _V )
43adantr 276 . . 3  |-  ( ( J  e.  V  /\  A  e.  W )  ->  X  e.  _V )
5 restco 14731 . . . 4  |-  ( ( J  e.  V  /\  X  e.  _V  /\  A  e.  W )  ->  (
( Jt  X )t  A )  =  ( Jt  ( X  i^i  A
) ) )
653com23 1212 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  X  e.  _V )  ->  ( ( Jt  X )t  A )  =  ( Jt  ( X  i^i  A ) ) )
74, 6mpd3an3 1351 . 2  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( ( Jt  X )t  A )  =  ( Jt  ( X  i^i  A ) ) )
81restid 13167 . . . 4  |-  ( J  e.  V  ->  ( Jt  X )  =  J )
98adantr 276 . . 3  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  X )  =  J )
109oveq1d 5977 . 2  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( ( Jt  X )t  A )  =  ( Jt  A ) )
11 incom 3369 . . . 4  |-  ( X  i^i  A )  =  ( A  i^i  X
)
1211oveq2i 5973 . . 3  |-  ( Jt  ( X  i^i  A ) )  =  ( Jt  ( A  i^i  X ) )
1312a1i 9 . 2  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  ( X  i^i  A ) )  =  ( Jt  ( A  i^i  X
) ) )
147, 10, 133eqtr3d 2247 1  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773    i^i cin 3169   U.cuni 3859  (class class class)co 5962   ↾t crest 13156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-rest 13158
This theorem is referenced by:  restuni2  14734  cnrest2r  14794
  Copyright terms: Public domain W3C validator