ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restin Unicode version

Theorem restin 14344
Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
restin.1  |-  X  = 
U. J
Assertion
Ref Expression
restin  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  X
) ) )

Proof of Theorem restin
StepHypRef Expression
1 restin.1 . . . . 5  |-  X  = 
U. J
2 uniexg 4470 . . . . 5  |-  ( J  e.  V  ->  U. J  e.  _V )
31, 2eqeltrid 2280 . . . 4  |-  ( J  e.  V  ->  X  e.  _V )
43adantr 276 . . 3  |-  ( ( J  e.  V  /\  A  e.  W )  ->  X  e.  _V )
5 restco 14342 . . . 4  |-  ( ( J  e.  V  /\  X  e.  _V  /\  A  e.  W )  ->  (
( Jt  X )t  A )  =  ( Jt  ( X  i^i  A
) ) )
653com23 1211 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  X  e.  _V )  ->  ( ( Jt  X )t  A )  =  ( Jt  ( X  i^i  A ) ) )
74, 6mpd3an3 1349 . 2  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( ( Jt  X )t  A )  =  ( Jt  ( X  i^i  A ) ) )
81restid 12861 . . . 4  |-  ( J  e.  V  ->  ( Jt  X )  =  J )
98adantr 276 . . 3  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  X )  =  J )
109oveq1d 5933 . 2  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( ( Jt  X )t  A )  =  ( Jt  A ) )
11 incom 3351 . . . 4  |-  ( X  i^i  A )  =  ( A  i^i  X
)
1211oveq2i 5929 . . 3  |-  ( Jt  ( X  i^i  A ) )  =  ( Jt  ( A  i^i  X ) )
1312a1i 9 . 2  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  ( X  i^i  A ) )  =  ( Jt  ( A  i^i  X
) ) )
147, 10, 133eqtr3d 2234 1  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152   U.cuni 3835  (class class class)co 5918   ↾t crest 12850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-rest 12852
This theorem is referenced by:  restuni2  14345  cnrest2r  14405
  Copyright terms: Public domain W3C validator