ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffres Unicode version

Theorem caucvgsrlemoffres 7790
Description: Lemma for caucvgsr 7792. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlembnd.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
caucvgsrlembnd.offset  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
Assertion
Ref Expression
caucvgsrlemoffres  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  k
)  +R  x ) ) ) ) )
Distinct variable groups:    A, a, k   
x, A, j, k    A, m, k    y, A, j, k, x    F, a, k    y, F    x, G, j, k    G, l, u, j, k    m, G, n, k    n, l, u    n, a, ph, k    ph, x, j    ph, m, n, a
Allowed substitution hints:    ph( y, u, l)    A( u, n, l)    F( x, u, j, m, n, l)    G( y, a)

Proof of Theorem caucvgsrlemoffres
Dummy variables  i  f  g  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . . . 4  |-  ( ph  ->  F : N. --> R. )
2 caucvgsr.cau . . . 4  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
3 caucvgsrlembnd.bnd . . . 4  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
4 caucvgsrlembnd.offset . . . 4  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
51, 2, 3, 4caucvgsrlemofff 7787 . . 3  |-  ( ph  ->  G : N. --> R. )
61, 2, 3, 4caucvgsrlemoffcau 7788 . . 3  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
71, 2, 3, 4caucvgsrlemoffgt1 7789 . . 3  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
85, 6, 7caucvgsrlemgt1 7785 . 2  |-  ( ph  ->  E. z  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( G `  i )  <R  ( z  +R  x
)  /\  z  <R  ( ( G `  i
)  +R  x ) ) ) ) )
9 simprl 529 . . . . 5  |-  ( (
ph  /\  ( z  e.  R.  /\  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( G `  i
)  <R  ( z  +R  x )  /\  z  <R  ( ( G `  i )  +R  x
) ) ) ) ) )  ->  z  e.  R. )
103caucvgsrlemasr 7780 . . . . . 6  |-  ( ph  ->  A  e.  R. )
1110adantr 276 . . . . 5  |-  ( (
ph  /\  ( z  e.  R.  /\  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( G `  i
)  <R  ( z  +R  x )  /\  z  <R  ( ( G `  i )  +R  x
) ) ) ) ) )  ->  A  e.  R. )
12 addclsr 7743 . . . . 5  |-  ( ( z  e.  R.  /\  A  e.  R. )  ->  ( z  +R  A
)  e.  R. )
139, 11, 12syl2anc 411 . . . 4  |-  ( (
ph  /\  ( z  e.  R.  /\  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( G `  i
)  <R  ( z  +R  x )  /\  z  <R  ( ( G `  i )  +R  x
) ) ) ) ) )  ->  (
z  +R  A )  e.  R. )
14 m1r 7742 . . . 4  |-  -1R  e.  R.
15 addclsr 7743 . . . 4  |-  ( ( ( z  +R  A
)  e.  R.  /\  -1R  e.  R. )  -> 
( ( z  +R  A )  +R  -1R )  e.  R. )
1613, 14, 15sylancl 413 . . 3  |-  ( (
ph  /\  ( z  e.  R.  /\  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( G `  i
)  <R  ( z  +R  x )  /\  z  <R  ( ( G `  i )  +R  x
) ) ) ) ) )  ->  (
( z  +R  A
)  +R  -1R )  e.  R. )
17 ltasrg 7760 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
f  <R  g  <->  ( h  +R  f )  <R  (
h  +R  g ) ) )
1817adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  /\  ( f  e. 
R.  /\  g  e.  R.  /\  h  e.  R. ) )  ->  (
f  <R  g  <->  ( h  +R  f )  <R  (
h  +R  g ) ) )
195ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  G : N. --> R. )
20 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  i  e.  N. )
2119, 20ffvelcdmd 5648 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( G `  i )  e.  R. )
22 simpllr 534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  z  e.  R. )
23 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  x  e.  R. )
24 addclsr 7743 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  R.  /\  x  e.  R. )  ->  ( z  +R  x
)  e.  R. )
2522, 23, 24syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( z  +R  x )  e.  R. )
2610ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  A  e.  R. )
27 addcomsrg 7745 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
2827adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  /\  ( f  e. 
R.  /\  g  e.  R. ) )  ->  (
f  +R  g )  =  ( g  +R  f ) )
2918, 21, 25, 26, 28caovord2d 6038 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( G `
 i )  <R 
( z  +R  x
)  <->  ( ( G `
 i )  +R  A )  <R  (
( z  +R  x
)  +R  A ) ) )
301, 2, 3, 4caucvgsrlemoffval 7786 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  N. )  ->  ( ( G `  i )  +R  A )  =  ( ( F `  i )  +R  1R ) )
3130adantlr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  R. )  /\  i  e.  N. )  ->  (
( G `  i
)  +R  A )  =  ( ( F `
 i )  +R 
1R ) )
3231adantlr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( G `
 i )  +R  A )  =  ( ( F `  i
)  +R  1R )
)
3332breq1d 4010 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( G `  i )  +R  A )  <R 
( ( z  +R  x )  +R  A
)  <->  ( ( F `
 i )  +R 
1R )  <R  (
( z  +R  x
)  +R  A ) ) )
3429, 33bitrd 188 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( G `
 i )  <R 
( z  +R  x
)  <->  ( ( F `
 i )  +R 
1R )  <R  (
( z  +R  x
)  +R  A ) ) )
35 addasssrg 7746 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
3635adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  /\  ( f  e. 
R.  /\  g  e.  R.  /\  h  e.  R. ) )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
3722, 23, 26, 28, 36caov32d 6049 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( z  +R  x )  +R  A )  =  ( ( z  +R  A
)  +R  x ) )
3837breq2d 4012 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( F `  i )  +R  1R )  <R 
( ( z  +R  x )  +R  A
)  <->  ( ( F `
 i )  +R 
1R )  <R  (
( z  +R  A
)  +R  x ) ) )
391ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  ->  F : N. --> R. )
4039ffvelcdmda 5647 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( F `  i )  e.  R. )
41 1sr 7741 . . . . . . . . . . . . . . . 16  |-  1R  e.  R.
42 addclsr 7743 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  R.  /\  1R  e.  R. )  -> 
( ( F `  i )  +R  1R )  e.  R. )
4340, 41, 42sylancl 413 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( F `
 i )  +R 
1R )  e.  R. )
4422, 26, 12syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( z  +R  A )  e.  R. )
45 addclsr 7743 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  +R  A
)  e.  R.  /\  x  e.  R. )  ->  ( ( z  +R  A )  +R  x
)  e.  R. )
4644, 23, 45syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( z  +R  A )  +R  x )  e.  R. )
4714a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  -1R  e.  R. )
4818, 43, 46, 47, 28caovord2d 6038 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( F `  i )  +R  1R )  <R 
( ( z  +R  A )  +R  x
)  <->  ( ( ( F `  i )  +R  1R )  +R 
-1R )  <R  (
( ( z  +R  A )  +R  x
)  +R  -1R )
) )
4941a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  1R  e.  R. )
50 addasssrg 7746 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  i
)  e.  R.  /\  1R  e.  R.  /\  -1R  e.  R. )  ->  (
( ( F `  i )  +R  1R )  +R  -1R )  =  ( ( F `  i )  +R  ( 1R  +R  -1R ) ) )
5140, 49, 47, 50syl3anc 1238 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( F `  i )  +R  1R )  +R 
-1R )  =  ( ( F `  i
)  +R  ( 1R 
+R  -1R ) ) )
52 addcomsrg 7745 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1R  e.  R.  /\  -1R  e.  R. )  -> 
( 1R  +R  -1R )  =  ( -1R  +R 
1R ) )
5341, 14, 52mp2an 426 . . . . . . . . . . . . . . . . . . 19  |-  ( 1R 
+R  -1R )  =  ( -1R  +R  1R )
54 m1p1sr 7750 . . . . . . . . . . . . . . . . . . 19  |-  ( -1R 
+R  1R )  =  0R
5553, 54eqtri 2198 . . . . . . . . . . . . . . . . . 18  |-  ( 1R 
+R  -1R )  =  0R
5655oveq2i 5880 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  i )  +R  ( 1R  +R  -1R ) )  =  ( ( F `  i
)  +R  0R )
57 0idsr 7757 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  i )  e.  R.  ->  (
( F `  i
)  +R  0R )  =  ( F `  i ) )
5840, 57syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( F `
 i )  +R  0R )  =  ( F `  i ) )
5956, 58eqtrid 2222 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( F `
 i )  +R  ( 1R  +R  -1R ) )  =  ( F `  i ) )
6051, 59eqtrd 2210 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( F `  i )  +R  1R )  +R 
-1R )  =  ( F `  i ) )
6144, 23, 47, 28, 36caov32d 6049 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( z  +R  A )  +R  x )  +R 
-1R )  =  ( ( ( z  +R  A )  +R  -1R )  +R  x ) )
6260, 61breq12d 4013 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( ( F `  i
)  +R  1R )  +R  -1R )  <R  (
( ( z  +R  A )  +R  x
)  +R  -1R )  <->  ( F `  i ) 
<R  ( ( ( z  +R  A )  +R 
-1R )  +R  x
) ) )
6348, 62bitrd 188 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( F `  i )  +R  1R )  <R 
( ( z  +R  A )  +R  x
)  <->  ( F `  i )  <R  (
( ( z  +R  A )  +R  -1R )  +R  x ) ) )
6434, 38, 633bitrd 214 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( G `
 i )  <R 
( z  +R  x
)  <->  ( F `  i )  <R  (
( ( z  +R  A )  +R  -1R )  +R  x ) ) )
6564biimpd 144 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( G `
 i )  <R 
( z  +R  x
)  ->  ( F `  i )  <R  (
( ( z  +R  A )  +R  -1R )  +R  x ) ) )
66 addclsr 7743 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  i
)  e.  R.  /\  x  e.  R. )  ->  ( ( G `  i )  +R  x
)  e.  R. )
6721, 23, 66syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( G `
 i )  +R  x )  e.  R. )
6818, 22, 67, 26, 28caovord2d 6038 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( z  <R 
( ( G `  i )  +R  x
)  <->  ( z  +R  A )  <R  (
( ( G `  i )  +R  x
)  +R  A ) ) )
6921, 23, 26, 28, 36caov32d 6049 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( G `  i )  +R  x )  +R  A )  =  ( ( ( G `  i )  +R  A
)  +R  x ) )
7032oveq1d 5884 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( G `  i )  +R  A )  +R  x )  =  ( ( ( F `  i )  +R  1R )  +R  x ) )
7169, 70eqtrd 2210 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( G `  i )  +R  x )  +R  A )  =  ( ( ( F `  i )  +R  1R )  +R  x ) )
7271breq2d 4012 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( z  +R  A )  <R 
( ( ( G `
 i )  +R  x )  +R  A
)  <->  ( z  +R  A )  <R  (
( ( F `  i )  +R  1R )  +R  x ) ) )
7368, 72bitrd 188 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( z  <R 
( ( G `  i )  +R  x
)  <->  ( z  +R  A )  <R  (
( ( F `  i )  +R  1R )  +R  x ) ) )
74 addclsr 7743 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F `  i )  +R  1R )  e.  R.  /\  x  e.  R. )  ->  (
( ( F `  i )  +R  1R )  +R  x )  e. 
R. )
7543, 23, 74syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( F `  i )  +R  1R )  +R  x )  e.  R. )
7618, 44, 75, 47, 28caovord2d 6038 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( z  +R  A )  <R 
( ( ( F `
 i )  +R 
1R )  +R  x
)  <->  ( ( z  +R  A )  +R 
-1R )  <R  (
( ( ( F `
 i )  +R 
1R )  +R  x
)  +R  -1R )
) )
7740, 49, 23, 28, 36caov32d 6049 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( F `  i )  +R  1R )  +R  x )  =  ( ( ( F `  i )  +R  x
)  +R  1R )
)
7877oveq1d 5884 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( ( F `  i
)  +R  1R )  +R  x )  +R  -1R )  =  ( (
( ( F `  i )  +R  x
)  +R  1R )  +R  -1R ) )
79 addclsr 7743 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F `  i
)  e.  R.  /\  x  e.  R. )  ->  ( ( F `  i )  +R  x
)  e.  R. )
8040, 23, 79syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( F `
 i )  +R  x )  e.  R. )
81 addasssrg 7746 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F `  i )  +R  x
)  e.  R.  /\  1R  e.  R.  /\  -1R  e.  R. )  ->  (
( ( ( F `
 i )  +R  x )  +R  1R )  +R  -1R )  =  ( ( ( F `
 i )  +R  x )  +R  ( 1R  +R  -1R ) ) )
8280, 49, 47, 81syl3anc 1238 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( ( F `  i
)  +R  x )  +R  1R )  +R 
-1R )  =  ( ( ( F `  i )  +R  x
)  +R  ( 1R 
+R  -1R ) ) )
8378, 82eqtrd 2210 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( ( F `  i
)  +R  1R )  +R  x )  +R  -1R )  =  ( (
( F `  i
)  +R  x )  +R  ( 1R  +R  -1R ) ) )
8455oveq2i 5880 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  +R  x )  +R  ( 1R  +R  -1R ) )  =  ( ( ( F `  i )  +R  x
)  +R  0R )
8583, 84eqtrdi 2226 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( ( F `  i
)  +R  1R )  +R  x )  +R  -1R )  =  ( (
( F `  i
)  +R  x )  +R  0R ) )
86 0idsr 7757 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  +R  x )  e.  R.  ->  (
( ( F `  i )  +R  x
)  +R  0R )  =  ( ( F `
 i )  +R  x ) )
8780, 86syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( F `  i )  +R  x )  +R  0R )  =  ( ( F `  i
)  +R  x ) )
8885, 87eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( ( F `  i
)  +R  1R )  +R  x )  +R  -1R )  =  ( ( F `  i )  +R  x ) )
8988breq2d 4012 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( z  +R  A )  +R  -1R )  <R 
( ( ( ( F `  i )  +R  1R )  +R  x )  +R  -1R ) 
<->  ( ( z  +R  A )  +R  -1R )  <R  ( ( F `
 i )  +R  x ) ) )
9073, 76, 893bitrd 214 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( z  <R 
( ( G `  i )  +R  x
)  <->  ( ( z  +R  A )  +R 
-1R )  <R  (
( F `  i
)  +R  x ) ) )
9190biimpd 144 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( z  <R 
( ( G `  i )  +R  x
)  ->  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  i )  +R  x
) ) )
9265, 91anim12d 335 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( ( G `  i ) 
<R  ( z  +R  x
)  /\  z  <R  ( ( G `  i
)  +R  x ) )  ->  ( ( F `  i )  <R  ( ( ( z  +R  A )  +R 
-1R )  +R  x
)  /\  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  i )  +R  x
) ) ) )
9392imim2d 54 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  /\  i  e.  N. )  ->  ( ( j 
<N  i  ->  ( ( G `  i ) 
<R  ( z  +R  x
)  /\  z  <R  ( ( G `  i
)  +R  x ) ) )  ->  (
j  <N  i  ->  (
( F `  i
)  <R  ( ( ( z  +R  A )  +R  -1R )  +R  x )  /\  (
( z  +R  A
)  +R  -1R )  <R  ( ( F `  i )  +R  x
) ) ) ) )
9493ralimdva 2544 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  ->  ( A. i  e.  N.  ( j  <N  i  ->  ( ( G `  i )  <R  (
z  +R  x )  /\  z  <R  (
( G `  i
)  +R  x ) ) )  ->  A. i  e.  N.  ( j  <N 
i  ->  ( ( F `  i )  <R  ( ( ( z  +R  A )  +R 
-1R )  +R  x
)  /\  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  i )  +R  x
) ) ) ) )
95 breq2 4004 . . . . . . . . . 10  |-  ( i  =  k  ->  (
j  <N  i  <->  j  <N  k ) )
96 fveq2 5511 . . . . . . . . . . . 12  |-  ( i  =  k  ->  ( F `  i )  =  ( F `  k ) )
9796breq1d 4010 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( F `  i
)  <R  ( ( ( z  +R  A )  +R  -1R )  +R  x )  <->  ( F `  k )  <R  (
( ( z  +R  A )  +R  -1R )  +R  x ) ) )
9896oveq1d 5884 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( F `  i
)  +R  x )  =  ( ( F `
 k )  +R  x ) )
9998breq2d 4012 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( ( z  +R  A )  +R  -1R )  <R  ( ( F `
 i )  +R  x )  <->  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  k )  +R  x
) ) )
10097, 99anbi12d 473 . . . . . . . . . 10  |-  ( i  =  k  ->  (
( ( F `  i )  <R  (
( ( z  +R  A )  +R  -1R )  +R  x )  /\  ( ( z  +R  A )  +R  -1R )  <R  ( ( F `
 i )  +R  x ) )  <->  ( ( F `  k )  <R  ( ( ( z  +R  A )  +R 
-1R )  +R  x
)  /\  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  k )  +R  x
) ) ) )
10195, 100imbi12d 234 . . . . . . . . 9  |-  ( i  =  k  ->  (
( j  <N  i  ->  ( ( F `  i )  <R  (
( ( z  +R  A )  +R  -1R )  +R  x )  /\  ( ( z  +R  A )  +R  -1R )  <R  ( ( F `
 i )  +R  x ) ) )  <-> 
( j  <N  k  ->  ( ( F `  k )  <R  (
( ( z  +R  A )  +R  -1R )  +R  x )  /\  ( ( z  +R  A )  +R  -1R )  <R  ( ( F `
 k )  +R  x ) ) ) ) )
102101cbvralv 2703 . . . . . . . 8  |-  ( A. i  e.  N.  (
j  <N  i  ->  (
( F `  i
)  <R  ( ( ( z  +R  A )  +R  -1R )  +R  x )  /\  (
( z  +R  A
)  +R  -1R )  <R  ( ( F `  i )  +R  x
) ) )  <->  A. k  e.  N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( ( ( z  +R  A )  +R 
-1R )  +R  x
)  /\  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  k )  +R  x
) ) ) )
10394, 102syl6ib 161 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  ->  ( A. i  e.  N.  ( j  <N  i  ->  ( ( G `  i )  <R  (
z  +R  x )  /\  z  <R  (
( G `  i
)  +R  x ) ) )  ->  A. k  e.  N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( ( ( z  +R  A )  +R 
-1R )  +R  x
)  /\  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  k )  +R  x
) ) ) ) )
104103reximdv 2578 . . . . . 6  |-  ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  ->  ( E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( G `  i
)  <R  ( z  +R  x )  /\  z  <R  ( ( G `  i )  +R  x
) ) )  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( ( ( z  +R  A )  +R  -1R )  +R  x )  /\  (
( z  +R  A
)  +R  -1R )  <R  ( ( F `  k )  +R  x
) ) ) ) )
105104imim2d 54 . . . . 5  |-  ( ( ( ph  /\  z  e.  R. )  /\  x  e.  R. )  ->  (
( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( G `  i
)  <R  ( z  +R  x )  /\  z  <R  ( ( G `  i )  +R  x
) ) ) )  ->  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( ( ( z  +R  A )  +R  -1R )  +R  x )  /\  (
( z  +R  A
)  +R  -1R )  <R  ( ( F `  k )  +R  x
) ) ) ) ) )
106105ralimdva 2544 . . . 4  |-  ( (
ph  /\  z  e.  R. )  ->  ( A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e. 
N.  ( j  <N 
i  ->  ( ( G `  i )  <R  ( z  +R  x
)  /\  z  <R  ( ( G `  i
)  +R  x ) ) ) )  ->  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( ( ( z  +R  A )  +R  -1R )  +R  x )  /\  (
( z  +R  A
)  +R  -1R )  <R  ( ( F `  k )  +R  x
) ) ) ) ) )
107106impr 379 . . 3  |-  ( (
ph  /\  ( z  e.  R.  /\  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( G `  i
)  <R  ( z  +R  x )  /\  z  <R  ( ( G `  i )  +R  x
) ) ) ) ) )  ->  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( ( ( z  +R  A )  +R  -1R )  +R  x )  /\  (
( z  +R  A
)  +R  -1R )  <R  ( ( F `  k )  +R  x
) ) ) ) )
108 oveq1 5876 . . . . . . . . . 10  |-  ( y  =  ( ( z  +R  A )  +R 
-1R )  ->  (
y  +R  x )  =  ( ( ( z  +R  A )  +R  -1R )  +R  x ) )
109108breq2d 4012 . . . . . . . . 9  |-  ( y  =  ( ( z  +R  A )  +R 
-1R )  ->  (
( F `  k
)  <R  ( y  +R  x )  <->  ( F `  k )  <R  (
( ( z  +R  A )  +R  -1R )  +R  x ) ) )
110 breq1 4003 . . . . . . . . 9  |-  ( y  =  ( ( z  +R  A )  +R 
-1R )  ->  (
y  <R  ( ( F `
 k )  +R  x )  <->  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  k )  +R  x
) ) )
111109, 110anbi12d 473 . . . . . . . 8  |-  ( y  =  ( ( z  +R  A )  +R 
-1R )  ->  (
( ( F `  k )  <R  (
y  +R  x )  /\  y  <R  (
( F `  k
)  +R  x ) )  <->  ( ( F `
 k )  <R 
( ( ( z  +R  A )  +R 
-1R )  +R  x
)  /\  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  k )  +R  x
) ) ) )
112111imbi2d 230 . . . . . . 7  |-  ( y  =  ( ( z  +R  A )  +R 
-1R )  ->  (
( j  <N  k  ->  ( ( F `  k )  <R  (
y  +R  x )  /\  y  <R  (
( F `  k
)  +R  x ) ) )  <->  ( j  <N  k  ->  ( ( F `  k )  <R  ( ( ( z  +R  A )  +R 
-1R )  +R  x
)  /\  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  k )  +R  x
) ) ) ) )
113112rexralbidv 2503 . . . . . 6  |-  ( y  =  ( ( z  +R  A )  +R 
-1R )  ->  ( E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k )  +R  x
) ) )  <->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( ( ( z  +R  A )  +R 
-1R )  +R  x
)  /\  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  k )  +R  x
) ) ) ) )
114113imbi2d 230 . . . . 5  |-  ( y  =  ( ( z  +R  A )  +R 
-1R )  ->  (
( 0R  <R  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k )  +R  x
) ) ) )  <-> 
( 0R  <R  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( ( ( z  +R  A )  +R  -1R )  +R  x )  /\  (
( z  +R  A
)  +R  -1R )  <R  ( ( F `  k )  +R  x
) ) ) ) ) )
115114ralbidv 2477 . . . 4  |-  ( y  =  ( ( z  +R  A )  +R 
-1R )  ->  ( A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k )  +R  x
) ) ) )  <->  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( ( ( z  +R  A )  +R  -1R )  +R  x )  /\  (
( z  +R  A
)  +R  -1R )  <R  ( ( F `  k )  +R  x
) ) ) ) ) )
116115rspcev 2841 . . 3  |-  ( ( ( ( z  +R  A )  +R  -1R )  e.  R.  /\  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( ( ( z  +R  A )  +R 
-1R )  +R  x
)  /\  ( (
z  +R  A )  +R  -1R )  <R 
( ( F `  k )  +R  x
) ) ) ) )  ->  E. y  e.  R.  A. x  e. 
R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k )  +R  x
) ) ) ) )
11716, 107, 116syl2anc 411 . 2  |-  ( (
ph  /\  ( z  e.  R.  /\  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. i  e.  N.  (
j  <N  i  ->  (
( G `  i
)  <R  ( z  +R  x )  /\  z  <R  ( ( G `  i )  +R  x
) ) ) ) ) )  ->  E. y  e.  R.  A. x  e. 
R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k )  +R  x
) ) ) ) )
1188, 117rexlimddv 2599 1  |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <R  ( y  +R  x
)  /\  y  <R  ( ( F `  k
)  +R  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   <.cop 3594   class class class wbr 4000    |-> cmpt 4061   -->wf 5208   ` cfv 5212  (class class class)co 5869   1oc1o 6404   [cec 6527   N.cnpi 7262    <N clti 7265    ~Q ceq 7269   *Qcrq 7274    <Q cltq 7275   1Pc1p 7282    +P. cpp 7283    ~R cer 7286   R.cnr 7287   0Rc0r 7288   1Rc1r 7289   -1Rcm1r 7290    +R cplr 7291    .R cmr 7292    <R cltr 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-i1p 7457  df-iplp 7458  df-imp 7459  df-iltp 7460  df-enr 7716  df-nr 7717  df-plr 7718  df-mr 7719  df-ltr 7720  df-0r 7721  df-1r 7722  df-m1r 7723
This theorem is referenced by:  caucvgsrlembnd  7791
  Copyright terms: Public domain W3C validator