ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex Unicode version

Theorem resqrexlemex 11172
Description: Lemma for resqrex 11173. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemex  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Distinct variable groups:    x, A, y, z    y, F, z    ph, z, y
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem resqrexlemex
Dummy variables  r  n  e  a  b  c  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcvg 11166 . 2  |-  ( ph  ->  E. r  e.  RR  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
5 simprl 529 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
r  e.  RR )
62adantr 276 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A  e.  RR )
73adantr 276 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  A )
8 simprr 531 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
9 fveq2 5555 . . . . . . . . . . . 12  |-  ( k  =  c  ->  ( F `  k )  =  ( F `  c ) )
109breq1d 4040 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
( F `  k
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  e ) ) )
119oveq1d 5934 . . . . . . . . . . . 12  |-  ( k  =  c  ->  (
( F `  k
)  +  e )  =  ( ( F `
 c )  +  e ) )
1211breq2d 4042 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
r  <  ( ( F `  k )  +  e )  <->  r  <  ( ( F `  c
)  +  e ) ) )
1310, 12anbi12d 473 . . . . . . . . . 10  |-  ( k  =  c  ->  (
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  e )  /\  r  < 
( ( F `  c )  +  e ) ) ) )
1413cbvralv 2726 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1514rexbii 2501 . . . . . . . 8  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. n  e.  NN  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
16 fveq2 5555 . . . . . . . . . 10  |-  ( n  =  b  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  b )
)
1716raleqdv 2696 . . . . . . . . 9  |-  ( n  =  b  ->  ( A. c  e.  ( ZZ>=
`  n ) ( ( F `  c
)  <  ( r  +  e )  /\  r  <  ( ( F `
 c )  +  e ) )  <->  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) ) )
1817cbvrexv 2727 . . . . . . . 8  |-  ( E. n  e.  NN  A. c  e.  ( ZZ>= `  n ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1915, 18bitri 184 . . . . . . 7  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
2019ralbii 2500 . . . . . 6  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) ) )
21 oveq2 5927 . . . . . . . . . 10  |-  ( e  =  a  ->  (
r  +  e )  =  ( r  +  a ) )
2221breq2d 4042 . . . . . . . . 9  |-  ( e  =  a  ->  (
( F `  c
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  a ) ) )
23 oveq2 5927 . . . . . . . . . 10  |-  ( e  =  a  ->  (
( F `  c
)  +  e )  =  ( ( F `
 c )  +  a ) )
2423breq2d 4042 . . . . . . . . 9  |-  ( e  =  a  ->  (
r  <  ( ( F `  c )  +  e )  <->  r  <  ( ( F `  c
)  +  a ) ) )
2522, 24anbi12d 473 . . . . . . . 8  |-  ( e  =  a  ->  (
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  a )  /\  r  < 
( ( F `  c )  +  a ) ) ) )
2625rexralbidv 2520 . . . . . . 7  |-  ( e  =  a  ->  ( E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) ) )
2726cbvralv 2726 . . . . . 6  |-  ( A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
2820, 27bitri 184 . . . . 5  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
298, 28sylib 122 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) )
301, 6, 7, 5, 29resqrexlemgt0 11167 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  r )
311, 6, 7, 5, 8resqrexlemsqa 11171 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
( r ^ 2 )  =  A )
32 breq2 4034 . . . . 5  |-  ( x  =  r  ->  (
0  <_  x  <->  0  <_  r ) )
33 oveq1 5926 . . . . . 6  |-  ( x  =  r  ->  (
x ^ 2 )  =  ( r ^
2 ) )
3433eqeq1d 2202 . . . . 5  |-  ( x  =  r  ->  (
( x ^ 2 )  =  A  <->  ( r ^ 2 )  =  A ) )
3532, 34anbi12d 473 . . . 4  |-  ( x  =  r  ->  (
( 0  <_  x  /\  ( x ^ 2 )  =  A )  <-> 
( 0  <_  r  /\  ( r ^ 2 )  =  A ) ) )
3635rspcev 2865 . . 3  |-  ( ( r  e.  RR  /\  ( 0  <_  r  /\  ( r ^ 2 )  =  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
375, 30, 31, 36syl12anc 1247 . 2  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
384, 37rexlimddv 2616 1  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {csn 3619   class class class wbr 4030    X. cxp 4658   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    < clt 8056    <_ cle 8057    / cdiv 8693   NNcn 8984   2c2 9035   ZZ>=cuz 9595   RR+crp 9722    seqcseq 10521   ^cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613
This theorem is referenced by:  resqrex  11173
  Copyright terms: Public domain W3C validator