ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex Unicode version

Theorem resqrexlemex 11029
Description: Lemma for resqrex 11030. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemex  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Distinct variable groups:    x, A, y, z    y, F, z    ph, z, y
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem resqrexlemex
Dummy variables  r  n  e  a  b  c  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcvg 11023 . 2  |-  ( ph  ->  E. r  e.  RR  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
5 simprl 529 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
r  e.  RR )
62adantr 276 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A  e.  RR )
73adantr 276 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  A )
8 simprr 531 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
9 fveq2 5515 . . . . . . . . . . . 12  |-  ( k  =  c  ->  ( F `  k )  =  ( F `  c ) )
109breq1d 4013 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
( F `  k
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  e ) ) )
119oveq1d 5889 . . . . . . . . . . . 12  |-  ( k  =  c  ->  (
( F `  k
)  +  e )  =  ( ( F `
 c )  +  e ) )
1211breq2d 4015 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
r  <  ( ( F `  k )  +  e )  <->  r  <  ( ( F `  c
)  +  e ) ) )
1310, 12anbi12d 473 . . . . . . . . . 10  |-  ( k  =  c  ->  (
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  e )  /\  r  < 
( ( F `  c )  +  e ) ) ) )
1413cbvralv 2703 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1514rexbii 2484 . . . . . . . 8  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. n  e.  NN  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
16 fveq2 5515 . . . . . . . . . 10  |-  ( n  =  b  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  b )
)
1716raleqdv 2678 . . . . . . . . 9  |-  ( n  =  b  ->  ( A. c  e.  ( ZZ>=
`  n ) ( ( F `  c
)  <  ( r  +  e )  /\  r  <  ( ( F `
 c )  +  e ) )  <->  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) ) )
1817cbvrexv 2704 . . . . . . . 8  |-  ( E. n  e.  NN  A. c  e.  ( ZZ>= `  n ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1915, 18bitri 184 . . . . . . 7  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
2019ralbii 2483 . . . . . 6  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) ) )
21 oveq2 5882 . . . . . . . . . 10  |-  ( e  =  a  ->  (
r  +  e )  =  ( r  +  a ) )
2221breq2d 4015 . . . . . . . . 9  |-  ( e  =  a  ->  (
( F `  c
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  a ) ) )
23 oveq2 5882 . . . . . . . . . 10  |-  ( e  =  a  ->  (
( F `  c
)  +  e )  =  ( ( F `
 c )  +  a ) )
2423breq2d 4015 . . . . . . . . 9  |-  ( e  =  a  ->  (
r  <  ( ( F `  c )  +  e )  <->  r  <  ( ( F `  c
)  +  a ) ) )
2522, 24anbi12d 473 . . . . . . . 8  |-  ( e  =  a  ->  (
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  a )  /\  r  < 
( ( F `  c )  +  a ) ) ) )
2625rexralbidv 2503 . . . . . . 7  |-  ( e  =  a  ->  ( E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) ) )
2726cbvralv 2703 . . . . . 6  |-  ( A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
2820, 27bitri 184 . . . . 5  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
298, 28sylib 122 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) )
301, 6, 7, 5, 29resqrexlemgt0 11024 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  r )
311, 6, 7, 5, 8resqrexlemsqa 11028 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
( r ^ 2 )  =  A )
32 breq2 4007 . . . . 5  |-  ( x  =  r  ->  (
0  <_  x  <->  0  <_  r ) )
33 oveq1 5881 . . . . . 6  |-  ( x  =  r  ->  (
x ^ 2 )  =  ( r ^
2 ) )
3433eqeq1d 2186 . . . . 5  |-  ( x  =  r  ->  (
( x ^ 2 )  =  A  <->  ( r ^ 2 )  =  A ) )
3532, 34anbi12d 473 . . . 4  |-  ( x  =  r  ->  (
( 0  <_  x  /\  ( x ^ 2 )  =  A )  <-> 
( 0  <_  r  /\  ( r ^ 2 )  =  A ) ) )
3635rspcev 2841 . . 3  |-  ( ( r  e.  RR  /\  ( 0  <_  r  /\  ( r ^ 2 )  =  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
375, 30, 31, 36syl12anc 1236 . 2  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
384, 37rexlimddv 2599 1  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {csn 3592   class class class wbr 4003    X. cxp 4624   ` cfv 5216  (class class class)co 5874    e. cmpo 5876   RRcr 7809   0cc0 7810   1c1 7811    + caddc 7813    < clt 7990    <_ cle 7991    / cdiv 8627   NNcn 8917   2c2 8968   ZZ>=cuz 9526   RR+crp 9651    seqcseq 10442   ^cexp 10516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527  df-rp 9652  df-seqfrec 10443  df-exp 10517
This theorem is referenced by:  resqrex  11030
  Copyright terms: Public domain W3C validator