ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex Unicode version

Theorem resqrexlemex 11336
Description: Lemma for resqrex 11337. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemex  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Distinct variable groups:    x, A, y, z    y, F, z    ph, z, y
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem resqrexlemex
Dummy variables  r  n  e  a  b  c  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . 3  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . 3  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemcvg 11330 . 2  |-  ( ph  ->  E. r  e.  RR  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
5 simprl 529 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
r  e.  RR )
62adantr 276 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A  e.  RR )
73adantr 276 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  A )
8 simprr 531 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) )
9 fveq2 5576 . . . . . . . . . . . 12  |-  ( k  =  c  ->  ( F `  k )  =  ( F `  c ) )
109breq1d 4054 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
( F `  k
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  e ) ) )
119oveq1d 5959 . . . . . . . . . . . 12  |-  ( k  =  c  ->  (
( F `  k
)  +  e )  =  ( ( F `
 c )  +  e ) )
1211breq2d 4056 . . . . . . . . . . 11  |-  ( k  =  c  ->  (
r  <  ( ( F `  k )  +  e )  <->  r  <  ( ( F `  c
)  +  e ) ) )
1310, 12anbi12d 473 . . . . . . . . . 10  |-  ( k  =  c  ->  (
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  e )  /\  r  < 
( ( F `  c )  +  e ) ) ) )
1413cbvralv 2738 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1514rexbii 2513 . . . . . . . 8  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. n  e.  NN  A. c  e.  ( ZZ>= `  n )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
16 fveq2 5576 . . . . . . . . . 10  |-  ( n  =  b  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  b )
)
1716raleqdv 2708 . . . . . . . . 9  |-  ( n  =  b  ->  ( A. c  e.  ( ZZ>=
`  n ) ( ( F `  c
)  <  ( r  +  e )  /\  r  <  ( ( F `
 c )  +  e ) )  <->  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) ) )
1817cbvrexv 2739 . . . . . . . 8  |-  ( E. n  e.  NN  A. c  e.  ( ZZ>= `  n ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
1915, 18bitri 184 . . . . . . 7  |-  ( E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  <  ( r  +  e )  /\  r  <  ( ( F `  k )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) ) )
2019ralbii 2512 . . . . . 6  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) ) )
21 oveq2 5952 . . . . . . . . . 10  |-  ( e  =  a  ->  (
r  +  e )  =  ( r  +  a ) )
2221breq2d 4056 . . . . . . . . 9  |-  ( e  =  a  ->  (
( F `  c
)  <  ( r  +  e )  <->  ( F `  c )  <  (
r  +  a ) ) )
23 oveq2 5952 . . . . . . . . . 10  |-  ( e  =  a  ->  (
( F `  c
)  +  e )  =  ( ( F `
 c )  +  a ) )
2423breq2d 4056 . . . . . . . . 9  |-  ( e  =  a  ->  (
r  <  ( ( F `  c )  +  e )  <->  r  <  ( ( F `  c
)  +  a ) ) )
2522, 24anbi12d 473 . . . . . . . 8  |-  ( e  =  a  ->  (
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  ( ( F `
 c )  < 
( r  +  a )  /\  r  < 
( ( F `  c )  +  a ) ) ) )
2625rexralbidv 2532 . . . . . . 7  |-  ( e  =  a  ->  ( E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  e )  /\  r  <  ( ( F `  c )  +  e ) )  <->  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) ) )
2726cbvralv 2738 . . . . . 6  |-  ( A. e  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  e )  /\  r  <  (
( F `  c
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
2820, 27bitri 184 . . . . 5  |-  ( A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) )  <->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b ) ( ( F `  c )  <  ( r  +  a )  /\  r  <  ( ( F `  c )  +  a ) ) )
298, 28sylib 122 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  A. a  e.  RR+  E. b  e.  NN  A. c  e.  ( ZZ>= `  b )
( ( F `  c )  <  (
r  +  a )  /\  r  <  (
( F `  c
)  +  a ) ) )
301, 6, 7, 5, 29resqrexlemgt0 11331 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
0  <_  r )
311, 6, 7, 5, 8resqrexlemsqa 11335 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  -> 
( r ^ 2 )  =  A )
32 breq2 4048 . . . . 5  |-  ( x  =  r  ->  (
0  <_  x  <->  0  <_  r ) )
33 oveq1 5951 . . . . . 6  |-  ( x  =  r  ->  (
x ^ 2 )  =  ( r ^
2 ) )
3433eqeq1d 2214 . . . . 5  |-  ( x  =  r  ->  (
( x ^ 2 )  =  A  <->  ( r ^ 2 )  =  A ) )
3532, 34anbi12d 473 . . . 4  |-  ( x  =  r  ->  (
( 0  <_  x  /\  ( x ^ 2 )  =  A )  <-> 
( 0  <_  r  /\  ( r ^ 2 )  =  A ) ) )
3635rspcev 2877 . . 3  |-  ( ( r  e.  RR  /\  ( 0  <_  r  /\  ( r ^ 2 )  =  A ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
2 )  =  A ) )
375, 30, 31, 36syl12anc 1248 . 2  |-  ( (
ph  /\  ( r  e.  RR  /\  A. e  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  k )  <  (
r  +  e )  /\  r  <  (
( F `  k
)  +  e ) ) ) )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
384, 37rexlimddv 2628 1  |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2 )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   {csn 3633   class class class wbr 4044    X. cxp 4673   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    < clt 8107    <_ cle 8108    / cdiv 8745   NNcn 9036   2c2 9087   ZZ>=cuz 9648   RR+crp 9775    seqcseq 10592   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  resqrex  11337
  Copyright terms: Public domain W3C validator