ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprrnd Unicode version

Theorem nqprrnd 7718
Description: A cut produced from a rational is rounded. Lemma for nqprlu 7722. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprrnd  |-  ( A  e.  Q.  ->  ( A. q  e.  Q.  ( q  e.  {
x  |  x  <Q  A }  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) ) )
Distinct variable group:    x, A, r, q

Proof of Theorem nqprrnd
StepHypRef Expression
1 ltbtwnnqq 7590 . . . . . 6  |-  ( A 
<Q  r  <->  E. q  e.  Q.  ( A  <Q  q  /\  q  <Q  r ) )
2 ancom 266 . . . . . . 7  |-  ( ( A  <Q  q  /\  q  <Q  r )  <->  ( q  <Q  r  /\  A  <Q  q ) )
32rexbii 2537 . . . . . 6  |-  ( E. q  e.  Q.  ( A  <Q  q  /\  q  <Q  r )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  A  <Q  q ) )
41, 3bitri 184 . . . . 5  |-  ( A 
<Q  r  <->  E. q  e.  Q.  ( q  <Q  r  /\  A  <Q  q ) )
5 vex 2802 . . . . . 6  |-  r  e. 
_V
6 breq2 4086 . . . . . 6  |-  ( x  =  r  ->  ( A  <Q  x  <->  A  <Q  r ) )
75, 6elab 2947 . . . . 5  |-  ( r  e.  { x  |  A  <Q  x }  <->  A 
<Q  r )
8 vex 2802 . . . . . . . 8  |-  q  e. 
_V
9 breq2 4086 . . . . . . . 8  |-  ( x  =  q  ->  ( A  <Q  x  <->  A  <Q  q ) )
108, 9elab 2947 . . . . . . 7  |-  ( q  e.  { x  |  A  <Q  x }  <->  A 
<Q  q )
1110anbi2i 457 . . . . . 6  |-  ( ( q  <Q  r  /\  q  e.  { x  |  A  <Q  x }
)  <->  ( q  <Q 
r  /\  A  <Q  q ) )
1211rexbii 2537 . . . . 5  |-  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  A  <Q  q ) )
134, 7, 123bitr4i 212 . . . 4  |-  ( r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) )
1413rgenw 2585 . . 3  |-  A. r  e.  Q.  ( r  e. 
{ x  |  A  <Q  x }  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  { x  |  A  <Q  x } ) )
1514a1i 9 . 2  |-  ( A  e.  Q.  ->  A. r  e.  Q.  ( r  e. 
{ x  |  A  <Q  x }  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  { x  |  A  <Q  x } ) ) )
16 ltbtwnnqq 7590 . . . 4  |-  ( q 
<Q  A  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  <Q  A ) )
17 breq1 4085 . . . . 5  |-  ( x  =  q  ->  (
x  <Q  A  <->  q  <Q  A ) )
188, 17elab 2947 . . . 4  |-  ( q  e.  { x  |  x  <Q  A }  <->  q 
<Q  A )
19 breq1 4085 . . . . . . 7  |-  ( x  =  r  ->  (
x  <Q  A  <->  r  <Q  A ) )
205, 19elab 2947 . . . . . 6  |-  ( r  e.  { x  |  x  <Q  A }  <->  r 
<Q  A )
2120anbi2i 457 . . . . 5  |-  ( ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
)  <->  ( q  <Q 
r  /\  r  <Q  A ) )
2221rexbii 2537 . . . 4  |-  ( E. r  e.  Q.  (
q  <Q  r  /\  r  e.  { x  |  x 
<Q  A } )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  <Q  A ) )
2316, 18, 223bitr4i 212 . . 3  |-  ( q  e.  { x  |  x  <Q  A }  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  { x  |  x 
<Q  A } ) )
2423rgenw 2585 . 2  |-  A. q  e.  Q.  ( q  e. 
{ x  |  x 
<Q  A }  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  { x  |  x  <Q  A } ) )
2515, 24jctil 312 1  |-  ( A  e.  Q.  ->  ( A. q  e.  Q.  ( q  e.  {
x  |  x  <Q  A }  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   class class class wbr 4082   Q.cnq 7455    <Q cltq 7460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528
This theorem is referenced by:  nqprxx  7721
  Copyright terms: Public domain W3C validator