ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaeqimp Unicode version

Theorem riotaeqimp 5952
Description: If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
riotaeqimp.i  |-  I  =  ( iota_ a  e.  V  X  =  A )
riotaeqimp.j  |-  J  =  ( iota_ a  e.  V  Y  =  A )
riotaeqimp.x  |-  ( ph  ->  E! a  e.  V  X  =  A )
riotaeqimp.y  |-  ( ph  ->  E! a  e.  V  Y  =  A )
Assertion
Ref Expression
riotaeqimp  |-  ( (
ph  /\  I  =  J )  ->  X  =  Y )
Distinct variable groups:    I, a    J, a    V, a    X, a    Y, a
Allowed substitution hints:    ph( a)    A( a)

Proof of Theorem riotaeqimp
StepHypRef Expression
1 riotaeqimp.j . . . . . . 7  |-  J  =  ( iota_ a  e.  V  Y  =  A )
21eqcomi 2213 . . . . . 6  |-  ( iota_ a  e.  V  Y  =  A )  =  J
32eqeq2i 2220 . . . . 5  |-  ( I  =  ( iota_ a  e.  V  Y  =  A )  <->  I  =  J
)
43a1i 9 . . . 4  |-  ( ph  ->  ( I  =  (
iota_ a  e.  V  Y  =  A )  <->  I  =  J ) )
54bicomd 141 . . 3  |-  ( ph  ->  ( I  =  J  <-> 
I  =  ( iota_ a  e.  V  Y  =  A ) ) )
65biimpa 296 . 2  |-  ( (
ph  /\  I  =  J )  ->  I  =  ( iota_ a  e.  V  Y  =  A ) )
7 riotaeqimp.i . . . . 5  |-  I  =  ( iota_ a  e.  V  X  =  A )
87eqeq1i 2217 . . . 4  |-  ( I  =  J  <->  ( iota_ a  e.  V  X  =  A )  =  J )
9 riotaeqimp.y . . . . . . 7  |-  ( ph  ->  E! a  e.  V  Y  =  A )
10 riotacl 5943 . . . . . . 7  |-  ( E! a  e.  V  Y  =  A  ->  ( iota_ a  e.  V  Y  =  A )  e.  V
)
119, 10syl 14 . . . . . 6  |-  ( ph  ->  ( iota_ a  e.  V  Y  =  A )  e.  V )
121, 11eqeltrid 2296 . . . . 5  |-  ( ph  ->  J  e.  V )
13 riotaeqimp.x . . . . 5  |-  ( ph  ->  E! a  e.  V  X  =  A )
14 nfv 1554 . . . . . . 7  |-  F/ a  J  e.  V
15 nfcvd 2353 . . . . . . 7  |-  ( J  e.  V  ->  F/_ a J )
16 nfcvd 2353 . . . . . . . 8  |-  ( J  e.  V  ->  F/_ a X )
1715nfcsb1d 3135 . . . . . . . 8  |-  ( J  e.  V  ->  F/_ a [_ J  /  a ]_ A )
1816, 17nfeqd 2367 . . . . . . 7  |-  ( J  e.  V  ->  F/ a  X  =  [_ J  /  a ]_ A
)
19 id 19 . . . . . . 7  |-  ( J  e.  V  ->  J  e.  V )
20 csbeq1a 3113 . . . . . . . . 9  |-  ( a  =  J  ->  A  =  [_ J  /  a ]_ A )
2120eqeq2d 2221 . . . . . . . 8  |-  ( a  =  J  ->  ( X  =  A  <->  X  =  [_ J  /  a ]_ A ) )
2221adantl 277 . . . . . . 7  |-  ( ( J  e.  V  /\  a  =  J )  ->  ( X  =  A  <-> 
X  =  [_ J  /  a ]_ A
) )
2314, 15, 18, 19, 22riota2df 5949 . . . . . 6  |-  ( ( J  e.  V  /\  E! a  e.  V  X  =  A )  ->  ( X  =  [_ J  /  a ]_ A  <->  (
iota_ a  e.  V  X  =  A )  =  J ) )
2423bicomd 141 . . . . 5  |-  ( ( J  e.  V  /\  E! a  e.  V  X  =  A )  ->  ( ( iota_ a  e.  V  X  =  A )  =  J  <->  X  =  [_ J  /  a ]_ A ) )
2512, 13, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( ( iota_ a  e.  V  X  =  A )  =  J  <->  X  =  [_ J  /  a ]_ A ) )
268, 25bitrid 192 . . 3  |-  ( ph  ->  ( I  =  J  <-> 
X  =  [_ J  /  a ]_ A
) )
2726biimpa 296 . 2  |-  ( (
ph  /\  I  =  J )  ->  X  =  [_ J  /  a ]_ A )
28 riotacl 5943 . . . . . . . 8  |-  ( E! a  e.  V  X  =  A  ->  ( iota_ a  e.  V  X  =  A )  e.  V
)
2913, 28syl 14 . . . . . . 7  |-  ( ph  ->  ( iota_ a  e.  V  X  =  A )  e.  V )
307, 29eqeltrid 2296 . . . . . 6  |-  ( ph  ->  I  e.  V )
31 nfv 1554 . . . . . . 7  |-  F/ a  I  e.  V
32 nfcvd 2353 . . . . . . 7  |-  ( I  e.  V  ->  F/_ a
I )
33 nfcvd 2353 . . . . . . . 8  |-  ( I  e.  V  ->  F/_ a Y )
3432nfcsb1d 3135 . . . . . . . 8  |-  ( I  e.  V  ->  F/_ a [_ I  /  a ]_ A )
3533, 34nfeqd 2367 . . . . . . 7  |-  ( I  e.  V  ->  F/ a  Y  =  [_ I  /  a ]_ A
)
36 id 19 . . . . . . 7  |-  ( I  e.  V  ->  I  e.  V )
37 csbeq1a 3113 . . . . . . . . 9  |-  ( a  =  I  ->  A  =  [_ I  /  a ]_ A )
3837eqeq2d 2221 . . . . . . . 8  |-  ( a  =  I  ->  ( Y  =  A  <->  Y  =  [_ I  /  a ]_ A ) )
3938adantl 277 . . . . . . 7  |-  ( ( I  e.  V  /\  a  =  I )  ->  ( Y  =  A  <-> 
Y  =  [_ I  /  a ]_ A
) )
4031, 32, 35, 36, 39riota2df 5949 . . . . . 6  |-  ( ( I  e.  V  /\  E! a  e.  V  Y  =  A )  ->  ( Y  =  [_ I  /  a ]_ A  <->  (
iota_ a  e.  V  Y  =  A )  =  I ) )
4130, 9, 40syl2anc 411 . . . . 5  |-  ( ph  ->  ( Y  =  [_ I  /  a ]_ A  <->  (
iota_ a  e.  V  Y  =  A )  =  I ) )
42 eqcom 2211 . . . . 5  |-  ( (
iota_ a  e.  V  Y  =  A )  =  I  <->  I  =  ( iota_ a  e.  V  Y  =  A ) )
4341, 42bitrdi 196 . . . 4  |-  ( ph  ->  ( Y  =  [_ I  /  a ]_ A  <->  I  =  ( iota_ a  e.  V  Y  =  A ) ) )
4443adantr 276 . . 3  |-  ( (
ph  /\  I  =  J )  ->  ( Y  =  [_ I  / 
a ]_ A  <->  I  =  ( iota_ a  e.  V  Y  =  A )
) )
45 csbeq1 3107 . . . . . . 7  |-  ( J  =  I  ->  [_ J  /  a ]_ A  =  [_ I  /  a ]_ A )
4645eqcoms 2212 . . . . . 6  |-  ( I  =  J  ->  [_ J  /  a ]_ A  =  [_ I  /  a ]_ A )
47 eqeq12 2222 . . . . . . 7  |-  ( ( X  =  [_ J  /  a ]_ A  /\  Y  =  [_ I  /  a ]_ A
)  ->  ( X  =  Y  <->  [_ J  /  a ]_ A  =  [_ I  /  a ]_ A
) )
4847ancoms 268 . . . . . 6  |-  ( ( Y  =  [_ I  /  a ]_ A  /\  X  =  [_ J  /  a ]_ A
)  ->  ( X  =  Y  <->  [_ J  /  a ]_ A  =  [_ I  /  a ]_ A
) )
4946, 48syl5ibrcom 157 . . . . 5  |-  ( I  =  J  ->  (
( Y  =  [_ I  /  a ]_ A  /\  X  =  [_ J  /  a ]_ A
)  ->  X  =  Y ) )
5049expd 258 . . . 4  |-  ( I  =  J  ->  ( Y  =  [_ I  / 
a ]_ A  ->  ( X  =  [_ J  / 
a ]_ A  ->  X  =  Y ) ) )
5150adantl 277 . . 3  |-  ( (
ph  /\  I  =  J )  ->  ( Y  =  [_ I  / 
a ]_ A  ->  ( X  =  [_ J  / 
a ]_ A  ->  X  =  Y ) ) )
5244, 51sylbird 170 . 2  |-  ( (
ph  /\  I  =  J )  ->  (
I  =  ( iota_ a  e.  V  Y  =  A )  ->  ( X  =  [_ J  / 
a ]_ A  ->  X  =  Y ) ) )
536, 27, 52mp2d 47 1  |-  ( (
ph  /\  I  =  J )  ->  X  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   E!wreu 2490   [_csb 3104   iota_crio 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-sn 3652  df-pr 3653  df-uni 3868  df-iota 5254  df-riota 5927
This theorem is referenced by:  uspgredg2v  15984
  Copyright terms: Public domain W3C validator