| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotaeqimp | Unicode version | ||
| Description: If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.) |
| Ref | Expression |
|---|---|
| riotaeqimp.i |
|
| riotaeqimp.j |
|
| riotaeqimp.x |
|
| riotaeqimp.y |
|
| Ref | Expression |
|---|---|
| riotaeqimp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqimp.j |
. . . . . . 7
| |
| 2 | 1 | eqcomi 2233 |
. . . . . 6
|
| 3 | 2 | eqeq2i 2240 |
. . . . 5
|
| 4 | 3 | a1i 9 |
. . . 4
|
| 5 | 4 | bicomd 141 |
. . 3
|
| 6 | 5 | biimpa 296 |
. 2
|
| 7 | riotaeqimp.i |
. . . . 5
| |
| 8 | 7 | eqeq1i 2237 |
. . . 4
|
| 9 | riotaeqimp.y |
. . . . . . 7
| |
| 10 | riotacl 5976 |
. . . . . . 7
| |
| 11 | 9, 10 | syl 14 |
. . . . . 6
|
| 12 | 1, 11 | eqeltrid 2316 |
. . . . 5
|
| 13 | riotaeqimp.x |
. . . . 5
| |
| 14 | nfv 1574 |
. . . . . . 7
| |
| 15 | nfcvd 2373 |
. . . . . . 7
| |
| 16 | nfcvd 2373 |
. . . . . . . 8
| |
| 17 | 15 | nfcsb1d 3155 |
. . . . . . . 8
|
| 18 | 16, 17 | nfeqd 2387 |
. . . . . . 7
|
| 19 | id 19 |
. . . . . . 7
| |
| 20 | csbeq1a 3133 |
. . . . . . . . 9
| |
| 21 | 20 | eqeq2d 2241 |
. . . . . . . 8
|
| 22 | 21 | adantl 277 |
. . . . . . 7
|
| 23 | 14, 15, 18, 19, 22 | riota2df 5982 |
. . . . . 6
|
| 24 | 23 | bicomd 141 |
. . . . 5
|
| 25 | 12, 13, 24 | syl2anc 411 |
. . . 4
|
| 26 | 8, 25 | bitrid 192 |
. . 3
|
| 27 | 26 | biimpa 296 |
. 2
|
| 28 | riotacl 5976 |
. . . . . . . 8
| |
| 29 | 13, 28 | syl 14 |
. . . . . . 7
|
| 30 | 7, 29 | eqeltrid 2316 |
. . . . . 6
|
| 31 | nfv 1574 |
. . . . . . 7
| |
| 32 | nfcvd 2373 |
. . . . . . 7
| |
| 33 | nfcvd 2373 |
. . . . . . . 8
| |
| 34 | 32 | nfcsb1d 3155 |
. . . . . . . 8
|
| 35 | 33, 34 | nfeqd 2387 |
. . . . . . 7
|
| 36 | id 19 |
. . . . . . 7
| |
| 37 | csbeq1a 3133 |
. . . . . . . . 9
| |
| 38 | 37 | eqeq2d 2241 |
. . . . . . . 8
|
| 39 | 38 | adantl 277 |
. . . . . . 7
|
| 40 | 31, 32, 35, 36, 39 | riota2df 5982 |
. . . . . 6
|
| 41 | 30, 9, 40 | syl2anc 411 |
. . . . 5
|
| 42 | eqcom 2231 |
. . . . 5
| |
| 43 | 41, 42 | bitrdi 196 |
. . . 4
|
| 44 | 43 | adantr 276 |
. . 3
|
| 45 | csbeq1 3127 |
. . . . . . 7
| |
| 46 | 45 | eqcoms 2232 |
. . . . . 6
|
| 47 | eqeq12 2242 |
. . . . . . 7
| |
| 48 | 47 | ancoms 268 |
. . . . . 6
|
| 49 | 46, 48 | syl5ibrcom 157 |
. . . . 5
|
| 50 | 49 | expd 258 |
. . . 4
|
| 51 | 50 | adantl 277 |
. . 3
|
| 52 | 44, 51 | sylbird 170 |
. 2
|
| 53 | 6, 27, 52 | mp2d 47 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-uni 3889 df-iota 5278 df-riota 5960 |
| This theorem is referenced by: uspgredg2v 16027 |
| Copyright terms: Public domain | W3C validator |