ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaeqimp GIF version

Theorem riotaeqimp 5985
Description: If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
riotaeqimp.i 𝐼 = (𝑎𝑉 𝑋 = 𝐴)
riotaeqimp.j 𝐽 = (𝑎𝑉 𝑌 = 𝐴)
riotaeqimp.x (𝜑 → ∃!𝑎𝑉 𝑋 = 𝐴)
riotaeqimp.y (𝜑 → ∃!𝑎𝑉 𝑌 = 𝐴)
Assertion
Ref Expression
riotaeqimp ((𝜑𝐼 = 𝐽) → 𝑋 = 𝑌)
Distinct variable groups:   𝐼,𝑎   𝐽,𝑎   𝑉,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)

Proof of Theorem riotaeqimp
StepHypRef Expression
1 riotaeqimp.j . . . . . . 7 𝐽 = (𝑎𝑉 𝑌 = 𝐴)
21eqcomi 2233 . . . . . 6 (𝑎𝑉 𝑌 = 𝐴) = 𝐽
32eqeq2i 2240 . . . . 5 (𝐼 = (𝑎𝑉 𝑌 = 𝐴) ↔ 𝐼 = 𝐽)
43a1i 9 . . . 4 (𝜑 → (𝐼 = (𝑎𝑉 𝑌 = 𝐴) ↔ 𝐼 = 𝐽))
54bicomd 141 . . 3 (𝜑 → (𝐼 = 𝐽𝐼 = (𝑎𝑉 𝑌 = 𝐴)))
65biimpa 296 . 2 ((𝜑𝐼 = 𝐽) → 𝐼 = (𝑎𝑉 𝑌 = 𝐴))
7 riotaeqimp.i . . . . 5 𝐼 = (𝑎𝑉 𝑋 = 𝐴)
87eqeq1i 2237 . . . 4 (𝐼 = 𝐽 ↔ (𝑎𝑉 𝑋 = 𝐴) = 𝐽)
9 riotaeqimp.y . . . . . . 7 (𝜑 → ∃!𝑎𝑉 𝑌 = 𝐴)
10 riotacl 5976 . . . . . . 7 (∃!𝑎𝑉 𝑌 = 𝐴 → (𝑎𝑉 𝑌 = 𝐴) ∈ 𝑉)
119, 10syl 14 . . . . . 6 (𝜑 → (𝑎𝑉 𝑌 = 𝐴) ∈ 𝑉)
121, 11eqeltrid 2316 . . . . 5 (𝜑𝐽𝑉)
13 riotaeqimp.x . . . . 5 (𝜑 → ∃!𝑎𝑉 𝑋 = 𝐴)
14 nfv 1574 . . . . . . 7 𝑎 𝐽𝑉
15 nfcvd 2373 . . . . . . 7 (𝐽𝑉𝑎𝐽)
16 nfcvd 2373 . . . . . . . 8 (𝐽𝑉𝑎𝑋)
1715nfcsb1d 3155 . . . . . . . 8 (𝐽𝑉𝑎𝐽 / 𝑎𝐴)
1816, 17nfeqd 2387 . . . . . . 7 (𝐽𝑉 → Ⅎ𝑎 𝑋 = 𝐽 / 𝑎𝐴)
19 id 19 . . . . . . 7 (𝐽𝑉𝐽𝑉)
20 csbeq1a 3133 . . . . . . . . 9 (𝑎 = 𝐽𝐴 = 𝐽 / 𝑎𝐴)
2120eqeq2d 2241 . . . . . . . 8 (𝑎 = 𝐽 → (𝑋 = 𝐴𝑋 = 𝐽 / 𝑎𝐴))
2221adantl 277 . . . . . . 7 ((𝐽𝑉𝑎 = 𝐽) → (𝑋 = 𝐴𝑋 = 𝐽 / 𝑎𝐴))
2314, 15, 18, 19, 22riota2df 5982 . . . . . 6 ((𝐽𝑉 ∧ ∃!𝑎𝑉 𝑋 = 𝐴) → (𝑋 = 𝐽 / 𝑎𝐴 ↔ (𝑎𝑉 𝑋 = 𝐴) = 𝐽))
2423bicomd 141 . . . . 5 ((𝐽𝑉 ∧ ∃!𝑎𝑉 𝑋 = 𝐴) → ((𝑎𝑉 𝑋 = 𝐴) = 𝐽𝑋 = 𝐽 / 𝑎𝐴))
2512, 13, 24syl2anc 411 . . . 4 (𝜑 → ((𝑎𝑉 𝑋 = 𝐴) = 𝐽𝑋 = 𝐽 / 𝑎𝐴))
268, 25bitrid 192 . . 3 (𝜑 → (𝐼 = 𝐽𝑋 = 𝐽 / 𝑎𝐴))
2726biimpa 296 . 2 ((𝜑𝐼 = 𝐽) → 𝑋 = 𝐽 / 𝑎𝐴)
28 riotacl 5976 . . . . . . . 8 (∃!𝑎𝑉 𝑋 = 𝐴 → (𝑎𝑉 𝑋 = 𝐴) ∈ 𝑉)
2913, 28syl 14 . . . . . . 7 (𝜑 → (𝑎𝑉 𝑋 = 𝐴) ∈ 𝑉)
307, 29eqeltrid 2316 . . . . . 6 (𝜑𝐼𝑉)
31 nfv 1574 . . . . . . 7 𝑎 𝐼𝑉
32 nfcvd 2373 . . . . . . 7 (𝐼𝑉𝑎𝐼)
33 nfcvd 2373 . . . . . . . 8 (𝐼𝑉𝑎𝑌)
3432nfcsb1d 3155 . . . . . . . 8 (𝐼𝑉𝑎𝐼 / 𝑎𝐴)
3533, 34nfeqd 2387 . . . . . . 7 (𝐼𝑉 → Ⅎ𝑎 𝑌 = 𝐼 / 𝑎𝐴)
36 id 19 . . . . . . 7 (𝐼𝑉𝐼𝑉)
37 csbeq1a 3133 . . . . . . . . 9 (𝑎 = 𝐼𝐴 = 𝐼 / 𝑎𝐴)
3837eqeq2d 2241 . . . . . . . 8 (𝑎 = 𝐼 → (𝑌 = 𝐴𝑌 = 𝐼 / 𝑎𝐴))
3938adantl 277 . . . . . . 7 ((𝐼𝑉𝑎 = 𝐼) → (𝑌 = 𝐴𝑌 = 𝐼 / 𝑎𝐴))
4031, 32, 35, 36, 39riota2df 5982 . . . . . 6 ((𝐼𝑉 ∧ ∃!𝑎𝑉 𝑌 = 𝐴) → (𝑌 = 𝐼 / 𝑎𝐴 ↔ (𝑎𝑉 𝑌 = 𝐴) = 𝐼))
4130, 9, 40syl2anc 411 . . . . 5 (𝜑 → (𝑌 = 𝐼 / 𝑎𝐴 ↔ (𝑎𝑉 𝑌 = 𝐴) = 𝐼))
42 eqcom 2231 . . . . 5 ((𝑎𝑉 𝑌 = 𝐴) = 𝐼𝐼 = (𝑎𝑉 𝑌 = 𝐴))
4341, 42bitrdi 196 . . . 4 (𝜑 → (𝑌 = 𝐼 / 𝑎𝐴𝐼 = (𝑎𝑉 𝑌 = 𝐴)))
4443adantr 276 . . 3 ((𝜑𝐼 = 𝐽) → (𝑌 = 𝐼 / 𝑎𝐴𝐼 = (𝑎𝑉 𝑌 = 𝐴)))
45 csbeq1 3127 . . . . . . 7 (𝐽 = 𝐼𝐽 / 𝑎𝐴 = 𝐼 / 𝑎𝐴)
4645eqcoms 2232 . . . . . 6 (𝐼 = 𝐽𝐽 / 𝑎𝐴 = 𝐼 / 𝑎𝐴)
47 eqeq12 2242 . . . . . . 7 ((𝑋 = 𝐽 / 𝑎𝐴𝑌 = 𝐼 / 𝑎𝐴) → (𝑋 = 𝑌𝐽 / 𝑎𝐴 = 𝐼 / 𝑎𝐴))
4847ancoms 268 . . . . . 6 ((𝑌 = 𝐼 / 𝑎𝐴𝑋 = 𝐽 / 𝑎𝐴) → (𝑋 = 𝑌𝐽 / 𝑎𝐴 = 𝐼 / 𝑎𝐴))
4946, 48syl5ibrcom 157 . . . . 5 (𝐼 = 𝐽 → ((𝑌 = 𝐼 / 𝑎𝐴𝑋 = 𝐽 / 𝑎𝐴) → 𝑋 = 𝑌))
5049expd 258 . . . 4 (𝐼 = 𝐽 → (𝑌 = 𝐼 / 𝑎𝐴 → (𝑋 = 𝐽 / 𝑎𝐴𝑋 = 𝑌)))
5150adantl 277 . . 3 ((𝜑𝐼 = 𝐽) → (𝑌 = 𝐼 / 𝑎𝐴 → (𝑋 = 𝐽 / 𝑎𝐴𝑋 = 𝑌)))
5244, 51sylbird 170 . 2 ((𝜑𝐼 = 𝐽) → (𝐼 = (𝑎𝑉 𝑌 = 𝐴) → (𝑋 = 𝐽 / 𝑎𝐴𝑋 = 𝑌)))
536, 27, 52mp2d 47 1 ((𝜑𝐼 = 𝐽) → 𝑋 = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  ∃!wreu 2510  csb 3124  crio 5959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-uni 3889  df-iota 5278  df-riota 5960
This theorem is referenced by:  uspgredg2v  16027
  Copyright terms: Public domain W3C validator