| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnex | GIF version | ||
| Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rnex | ⊢ ran 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rnexg 4952 | . 2 ⊢ (𝐴 ∈ V → ran 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ran crn 4684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-cnv 4691 df-dm 4693 df-rn 4694 |
| This theorem is referenced by: ffoss 5566 abrexex 6215 fo2nd 6257 tfrexlem 6433 ixpsnf1o 6836 bren 6848 xpassen 6940 mapen 6958 ssenen 6963 seqex 10616 hashfacen 11003 shftfval 11207 restfn 13150 prdsvallem 13179 prdsval 13180 mopnset 14389 metuex 14392 tgioo 15101 |
| Copyright terms: Public domain | W3C validator |