ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restfn Unicode version

Theorem restfn 12156
Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restfn  |-t  Fn  ( _V  X.  _V )

Proof of Theorem restfn
Dummy variables  x  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 12154 . 2  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
2 vex 2692 . . . 4  |-  j  e. 
_V
32mptex 5652 . . 3  |-  ( y  e.  j  |->  ( y  i^i  x ) )  e.  _V
43rnex 4812 . 2  |-  ran  (
y  e.  j  |->  ( y  i^i  x ) )  e.  _V
51, 4fnmpoi 6108 1  |-t  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2689    i^i cin 3073    |-> cmpt 3995    X. cxp 4543   ran crn 4546    Fn wfn 5124   ↾t crest 12152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-rest 12154
This theorem is referenced by:  topnfn  12157  topnvalg  12164  restbasg  12369  tgrest  12370  restco  12375  txrest  12477
  Copyright terms: Public domain W3C validator