ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restfn Unicode version

Theorem restfn 12854
Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restfn  |-t  Fn  ( _V  X.  _V )

Proof of Theorem restfn
Dummy variables  x  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 12852 . 2  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
2 vex 2763 . . . 4  |-  j  e. 
_V
32mptex 5784 . . 3  |-  ( y  e.  j  |->  ( y  i^i  x ) )  e.  _V
43rnex 4929 . 2  |-  ran  (
y  e.  j  |->  ( y  i^i  x ) )  e.  _V
51, 4fnmpoi 6257 1  |-t  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2760    i^i cin 3152    |-> cmpt 4090    X. cxp 4657   ran crn 4660    Fn wfn 5249   ↾t crest 12850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-rest 12852
This theorem is referenced by:  topnfn  12855  topnvalg  12862  restbasg  14336  tgrest  14337  restco  14342  txrest  14444
  Copyright terms: Public domain W3C validator