ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgss Unicode version

Theorem rrgss 13946
Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgss.e  |-  E  =  (RLReg `  R )
rrgss.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
rrgss  |-  E  C_  B

Proof of Theorem rrgss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgss.e . . 3  |-  E  =  (RLReg `  R )
2 rrgss.b . . 3  |-  B  =  ( Base `  R
)
3 eqid 2204 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
4 eqid 2204 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
51, 2, 3, 4rrgval 13942 . 2  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  y  =  ( 0g `  R ) ) }
65ssrab3 3278 1  |-  E  C_  B
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372   A.wral 2483    C_ wss 3165   ` cfv 5268  (class class class)co 5934   Basecbs 12751   .rcmulr 12829   0gc0g 13006  RLRegcrlreg 13935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-ov 5937  df-inn 9019  df-ndx 12754  df-slot 12755  df-base 12757  df-rlreg 13938
This theorem is referenced by:  znrrg  14340
  Copyright terms: Public domain W3C validator