Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqeq1d | GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq1d | ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq1 10383 | . 2 ⊢ (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 seqcseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fv 5196 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-seqfrec 10381 |
This theorem is referenced by: seqeq123d 10389 seq3f1olemqsum 10435 bcval5 10676 bcn2 10677 seq3shft 10780 iserex 11280 iser3shft 11287 isumsplit 11432 ntrivcvgap 11489 eftlub 11631 |
Copyright terms: Public domain | W3C validator |