| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq1d | GIF version | ||
| Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| seqeq1d | ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | seqeq1 10612 | . 2 ⊢ (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 seqcseq 10609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-cnv 4690 df-dm 4692 df-rn 4693 df-res 4694 df-iota 5240 df-fv 5287 df-oprab 5960 df-mpo 5961 df-recs 6403 df-frec 6489 df-seqfrec 10610 |
| This theorem is referenced by: seqeq123d 10618 seq3f1olemqsum 10675 seqf1oglem2 10682 bcval5 10925 bcn2 10926 seq3shft 11219 iserex 11720 iser3shft 11727 isumsplit 11872 ntrivcvgap 11929 eftlub 12071 gsumfzval 13293 gsumval2 13299 mulgnndir 13557 |
| Copyright terms: Public domain | W3C validator |