ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq1d GIF version

Theorem seqeq1d 10453
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
seqeq1d (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))

Proof of Theorem seqeq1d
StepHypRef Expression
1 seqeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 seqeq1 10450 . 2 (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))
31, 2syl 14 1 (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fv 5226  df-oprab 5881  df-mpo 5882  df-recs 6308  df-frec 6394  df-seqfrec 10448
This theorem is referenced by:  seqeq123d  10456  seq3f1olemqsum  10502  bcval5  10745  bcn2  10746  seq3shft  10849  iserex  11349  iser3shft  11356  isumsplit  11501  ntrivcvgap  11558  eftlub  11700  mulgnndir  13017
  Copyright terms: Public domain W3C validator