ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsabsd Unicode version

Theorem setsabsd 12813
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Hypotheses
Ref Expression
setsabsd.s  |-  ( ph  ->  S  e.  V )
setsabsd.a  |-  ( ph  ->  A  e.  W )
setsabsd.b  |-  ( ph  ->  B  e.  X )
setsabsd.c  |-  ( ph  ->  C  e.  U )
Assertion
Ref Expression
setsabsd  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. )
)

Proof of Theorem setsabsd
StepHypRef Expression
1 setsabsd.s . . . 4  |-  ( ph  ->  S  e.  V )
2 setsabsd.a . . . 4  |-  ( ph  ->  A  e.  W )
3 setsabsd.b . . . 4  |-  ( ph  ->  B  e.  X )
4 setsresg 12812 . . . 4  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) ) )
51, 2, 3, 4syl3anc 1249 . . 3  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) ) )
65uneq1d 3325 . 2  |-  ( ph  ->  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
7 setsex 12806 . . . 4  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( S sSet  <. A ,  B >. )  e.  _V )
81, 2, 3, 7syl3anc 1249 . . 3  |-  ( ph  ->  ( S sSet  <. A ,  B >. )  e.  _V )
9 setsabsd.c . . 3  |-  ( ph  ->  C  e.  U )
10 setsvala 12805 . . 3  |-  ( ( ( S sSet  <. A ,  B >. )  e.  _V  /\  A  e.  W  /\  C  e.  U )  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
118, 2, 9, 10syl3anc 1249 . 2  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
12 setsvala 12805 . . 3  |-  ( ( S  e.  V  /\  A  e.  W  /\  C  e.  U )  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
131, 2, 9, 12syl3anc 1249 . 2  |-  ( ph  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
146, 11, 133eqtr4d 2247 1  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771    \ cdif 3162    u. cun 3163   {csn 3632   <.cop 3635    |` cres 4676  (class class class)co 5943   sSet csts 12772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sets 12781
This theorem is referenced by:  ressressg  12849
  Copyright terms: Public domain W3C validator