ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsabsd Unicode version

Theorem setsabsd 12037
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Hypotheses
Ref Expression
setsabsd.s  |-  ( ph  ->  S  e.  V )
setsabsd.a  |-  ( ph  ->  A  e.  W )
setsabsd.b  |-  ( ph  ->  B  e.  X )
setsabsd.c  |-  ( ph  ->  C  e.  U )
Assertion
Ref Expression
setsabsd  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. )
)

Proof of Theorem setsabsd
StepHypRef Expression
1 setsabsd.s . . . 4  |-  ( ph  ->  S  e.  V )
2 setsabsd.a . . . 4  |-  ( ph  ->  A  e.  W )
3 setsabsd.b . . . 4  |-  ( ph  ->  B  e.  X )
4 setsresg 12036 . . . 4  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) ) )
51, 2, 3, 4syl3anc 1217 . . 3  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) ) )
65uneq1d 3234 . 2  |-  ( ph  ->  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
7 setsex 12030 . . . 4  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( S sSet  <. A ,  B >. )  e.  _V )
81, 2, 3, 7syl3anc 1217 . . 3  |-  ( ph  ->  ( S sSet  <. A ,  B >. )  e.  _V )
9 setsabsd.c . . 3  |-  ( ph  ->  C  e.  U )
10 setsvala 12029 . . 3  |-  ( ( ( S sSet  <. A ,  B >. )  e.  _V  /\  A  e.  W  /\  C  e.  U )  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
118, 2, 9, 10syl3anc 1217 . 2  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
12 setsvala 12029 . . 3  |-  ( ( S  e.  V  /\  A  e.  W  /\  C  e.  U )  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
131, 2, 9, 12syl3anc 1217 . 2  |-  ( ph  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
146, 11, 133eqtr4d 2183 1  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   _Vcvv 2689    \ cdif 3073    u. cun 3074   {csn 3532   <.cop 3535    |` cres 4549  (class class class)co 5782   sSet csts 11996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-res 4559  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sets 12005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator