ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsabsd Unicode version

Theorem setsabsd 12444
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Hypotheses
Ref Expression
setsabsd.s  |-  ( ph  ->  S  e.  V )
setsabsd.a  |-  ( ph  ->  A  e.  W )
setsabsd.b  |-  ( ph  ->  B  e.  X )
setsabsd.c  |-  ( ph  ->  C  e.  U )
Assertion
Ref Expression
setsabsd  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. )
)

Proof of Theorem setsabsd
StepHypRef Expression
1 setsabsd.s . . . 4  |-  ( ph  ->  S  e.  V )
2 setsabsd.a . . . 4  |-  ( ph  ->  A  e.  W )
3 setsabsd.b . . . 4  |-  ( ph  ->  B  e.  X )
4 setsresg 12443 . . . 4  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) ) )
51, 2, 3, 4syl3anc 1233 . . 3  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) ) )
65uneq1d 3280 . 2  |-  ( ph  ->  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  C >. } )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
7 setsex 12437 . . . 4  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( S sSet  <. A ,  B >. )  e.  _V )
81, 2, 3, 7syl3anc 1233 . . 3  |-  ( ph  ->  ( S sSet  <. A ,  B >. )  e.  _V )
9 setsabsd.c . . 3  |-  ( ph  ->  C  e.  U )
10 setsvala 12436 . . 3  |-  ( ( ( S sSet  <. A ,  B >. )  e.  _V  /\  A  e.  W  /\  C  e.  U )  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
118, 2, 9, 10syl3anc 1233 . 2  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  u.  { <. A ,  C >. } ) )
12 setsvala 12436 . . 3  |-  ( ( S  e.  V  /\  A  e.  W  /\  C  e.  U )  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
131, 2, 9, 12syl3anc 1233 . 2  |-  ( ph  ->  ( S sSet  <. A ,  C >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  C >. } ) )
146, 11, 133eqtr4d 2213 1  |-  ( ph  ->  ( ( S sSet  <. A ,  B >. ) sSet  <. A ,  C >. )  =  ( S sSet  <. A ,  C >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    \ cdif 3118    u. cun 3119   {csn 3581   <.cop 3584    |` cres 4611  (class class class)co 5851   sSet csts 12403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-res 4621  df-iota 5158  df-fun 5198  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-sets 12412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator