ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsabsd GIF version

Theorem setsabsd 12742
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Hypotheses
Ref Expression
setsabsd.s (𝜑𝑆𝑉)
setsabsd.a (𝜑𝐴𝑊)
setsabsd.b (𝜑𝐵𝑋)
setsabsd.c (𝜑𝐶𝑈)
Assertion
Ref Expression
setsabsd (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))

Proof of Theorem setsabsd
StepHypRef Expression
1 setsabsd.s . . . 4 (𝜑𝑆𝑉)
2 setsabsd.a . . . 4 (𝜑𝐴𝑊)
3 setsabsd.b . . . 4 (𝜑𝐵𝑋)
4 setsresg 12741 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
51, 2, 3, 4syl3anc 1249 . . 3 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
65uneq1d 3317 . 2 (𝜑 → (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
7 setsex 12735 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
81, 2, 3, 7syl3anc 1249 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
9 setsabsd.c . . 3 (𝜑𝐶𝑈)
10 setsvala 12734 . . 3 (((𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V ∧ 𝐴𝑊𝐶𝑈) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
118, 2, 9, 10syl3anc 1249 . 2 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
12 setsvala 12734 . . 3 ((𝑆𝑉𝐴𝑊𝐶𝑈) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
131, 2, 9, 12syl3anc 1249 . 2 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
146, 11, 133eqtr4d 2239 1 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cdif 3154  cun 3155  {csn 3623  cop 3626  cres 4666  (class class class)co 5925   sSet csts 12701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sets 12710
This theorem is referenced by:  ressressg  12778
  Copyright terms: Public domain W3C validator