| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > setsabsd | GIF version | ||
| Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| setsabsd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) | 
| setsabsd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) | 
| setsabsd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑋) | 
| setsabsd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) | 
| Ref | Expression | 
|---|---|
| setsabsd | ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | setsabsd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | setsabsd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 3 | setsabsd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 4 | setsresg 12716 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | . . 3 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | 
| 6 | 5 | uneq1d 3316 | . 2 ⊢ (𝜑 → (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | 
| 7 | setsex 12710 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | |
| 8 | 1, 2, 3, 7 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | 
| 9 | setsabsd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 10 | setsvala 12709 | . . 3 ⊢ (((𝑆 sSet 〈𝐴, 𝐵〉) ∈ V ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
| 11 | 8, 2, 9, 10 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | 
| 12 | setsvala 12709 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
| 13 | 1, 2, 9, 12 | syl3anc 1249 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | 
| 14 | 6, 11, 13 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∖ cdif 3154 ∪ cun 3155 {csn 3622 〈cop 3625 ↾ cres 4665 (class class class)co 5922 sSet csts 12676 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sets 12685 | 
| This theorem is referenced by: ressressg 12753 | 
| Copyright terms: Public domain | W3C validator |