![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsabsd | GIF version |
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.) |
Ref | Expression |
---|---|
setsabsd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsabsd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
setsabsd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
setsabsd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
setsabsd | ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsabsd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | setsabsd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
3 | setsabsd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
4 | setsresg 12659 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | |
5 | 1, 2, 3, 4 | syl3anc 1249 | . . 3 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
6 | 5 | uneq1d 3313 | . 2 ⊢ (𝜑 → (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
7 | setsex 12653 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | |
8 | 1, 2, 3, 7 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
9 | setsabsd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
10 | setsvala 12652 | . . 3 ⊢ (((𝑆 sSet 〈𝐴, 𝐵〉) ∈ V ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
11 | 8, 2, 9, 10 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
12 | setsvala 12652 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
13 | 1, 2, 9, 12 | syl3anc 1249 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
14 | 6, 11, 13 | 3eqtr4d 2236 | 1 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3151 ∪ cun 3152 {csn 3619 〈cop 3622 ↾ cres 4662 (class class class)co 5919 sSet csts 12619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sets 12628 |
This theorem is referenced by: ressressg 12696 |
Copyright terms: Public domain | W3C validator |