Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsabsd | GIF version |
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.) |
Ref | Expression |
---|---|
setsabsd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsabsd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
setsabsd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
setsabsd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
setsabsd | ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsabsd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | setsabsd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
3 | setsabsd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
4 | setsresg 12454 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | |
5 | 1, 2, 3, 4 | syl3anc 1233 | . . 3 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
6 | 5 | uneq1d 3280 | . 2 ⊢ (𝜑 → (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
7 | setsex 12448 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | |
8 | 1, 2, 3, 7 | syl3anc 1233 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
9 | setsabsd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
10 | setsvala 12447 | . . 3 ⊢ (((𝑆 sSet 〈𝐴, 𝐵〉) ∈ V ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
11 | 8, 2, 9, 10 | syl3anc 1233 | . 2 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
12 | setsvala 12447 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
13 | 1, 2, 9, 12 | syl3anc 1233 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
14 | 6, 11, 13 | 3eqtr4d 2213 | 1 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ∪ cun 3119 {csn 3583 〈cop 3586 ↾ cres 4613 (class class class)co 5853 sSet csts 12414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sets 12423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |