ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsabsd GIF version

Theorem setsabsd 13057
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Hypotheses
Ref Expression
setsabsd.s (𝜑𝑆𝑉)
setsabsd.a (𝜑𝐴𝑊)
setsabsd.b (𝜑𝐵𝑋)
setsabsd.c (𝜑𝐶𝑈)
Assertion
Ref Expression
setsabsd (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))

Proof of Theorem setsabsd
StepHypRef Expression
1 setsabsd.s . . . 4 (𝜑𝑆𝑉)
2 setsabsd.a . . . 4 (𝜑𝐴𝑊)
3 setsabsd.b . . . 4 (𝜑𝐵𝑋)
4 setsresg 13056 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
51, 2, 3, 4syl3anc 1271 . . 3 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
65uneq1d 3357 . 2 (𝜑 → (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
7 setsex 13050 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
81, 2, 3, 7syl3anc 1271 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
9 setsabsd.c . . 3 (𝜑𝐶𝑈)
10 setsvala 13049 . . 3 (((𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V ∧ 𝐴𝑊𝐶𝑈) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
118, 2, 9, 10syl3anc 1271 . 2 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
12 setsvala 13049 . . 3 ((𝑆𝑉𝐴𝑊𝐶𝑈) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
131, 2, 9, 12syl3anc 1271 . 2 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
146, 11, 133eqtr4d 2272 1 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  cun 3195  {csn 3666  cop 3669  cres 4718  (class class class)co 5994   sSet csts 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-res 4728  df-iota 5274  df-fun 5316  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-sets 13025
This theorem is referenced by:  ressressg  13094
  Copyright terms: Public domain W3C validator