ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsabsd GIF version

Theorem setsabsd 12660
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Hypotheses
Ref Expression
setsabsd.s (𝜑𝑆𝑉)
setsabsd.a (𝜑𝐴𝑊)
setsabsd.b (𝜑𝐵𝑋)
setsabsd.c (𝜑𝐶𝑈)
Assertion
Ref Expression
setsabsd (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))

Proof of Theorem setsabsd
StepHypRef Expression
1 setsabsd.s . . . 4 (𝜑𝑆𝑉)
2 setsabsd.a . . . 4 (𝜑𝐴𝑊)
3 setsabsd.b . . . 4 (𝜑𝐵𝑋)
4 setsresg 12659 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
51, 2, 3, 4syl3anc 1249 . . 3 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
65uneq1d 3313 . 2 (𝜑 → (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
7 setsex 12653 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
81, 2, 3, 7syl3anc 1249 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
9 setsabsd.c . . 3 (𝜑𝐶𝑈)
10 setsvala 12652 . . 3 (((𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V ∧ 𝐴𝑊𝐶𝑈) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
118, 2, 9, 10syl3anc 1249 . 2 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
12 setsvala 12652 . . 3 ((𝑆𝑉𝐴𝑊𝐶𝑈) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
131, 2, 9, 12syl3anc 1249 . 2 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
146, 11, 133eqtr4d 2236 1 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3151  cun 3152  {csn 3619  cop 3622  cres 4662  (class class class)co 5919   sSet csts 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sets 12628
This theorem is referenced by:  ressressg  12696
  Copyright terms: Public domain W3C validator