ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsabsd GIF version

Theorem setsabsd 12915
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Hypotheses
Ref Expression
setsabsd.s (𝜑𝑆𝑉)
setsabsd.a (𝜑𝐴𝑊)
setsabsd.b (𝜑𝐵𝑋)
setsabsd.c (𝜑𝐶𝑈)
Assertion
Ref Expression
setsabsd (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))

Proof of Theorem setsabsd
StepHypRef Expression
1 setsabsd.s . . . 4 (𝜑𝑆𝑉)
2 setsabsd.a . . . 4 (𝜑𝐴𝑊)
3 setsabsd.b . . . 4 (𝜑𝐵𝑋)
4 setsresg 12914 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
51, 2, 3, 4syl3anc 1250 . . 3 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
65uneq1d 3327 . 2 (𝜑 → (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
7 setsex 12908 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
81, 2, 3, 7syl3anc 1250 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
9 setsabsd.c . . 3 (𝜑𝐶𝑈)
10 setsvala 12907 . . 3 (((𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V ∧ 𝐴𝑊𝐶𝑈) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
118, 2, 9, 10syl3anc 1250 . 2 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
12 setsvala 12907 . . 3 ((𝑆𝑉𝐴𝑊𝐶𝑈) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
131, 2, 9, 12syl3anc 1250 . 2 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
146, 11, 133eqtr4d 2249 1 (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  cdif 3164  cun 3165  {csn 3634  cop 3637  cres 4681  (class class class)co 5951   sSet csts 12874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-res 4691  df-iota 5237  df-fun 5278  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-sets 12883
This theorem is referenced by:  ressressg  12951
  Copyright terms: Public domain W3C validator