![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsabsd | GIF version |
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.) |
Ref | Expression |
---|---|
setsabsd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsabsd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
setsabsd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
setsabsd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
setsabsd | ⊢ (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsabsd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | setsabsd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
3 | setsabsd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
4 | setsresg 12503 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | |
5 | 1, 2, 3, 4 | syl3anc 1238 | . . 3 ⊢ (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
6 | 5 | uneq1d 3290 | . 2 ⊢ (𝜑 → (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩})) |
7 | setsex 12497 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V) | |
8 | 1, 2, 3, 7 | syl3anc 1238 | . . 3 ⊢ (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V) |
9 | setsabsd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
10 | setsvala 12496 | . . 3 ⊢ (((𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩})) | |
11 | 8, 2, 9, 10 | syl3anc 1238 | . 2 ⊢ (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩})) |
12 | setsvala 12496 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩})) | |
13 | 1, 2, 9, 12 | syl3anc 1238 | . 2 ⊢ (𝜑 → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩})) |
14 | 6, 11, 13 | 3eqtr4d 2220 | 1 ⊢ (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∖ cdif 3128 ∪ cun 3129 {csn 3594 ⟨cop 3597 ↾ cres 4630 (class class class)co 5878 sSet csts 12463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-sets 12472 |
This theorem is referenced by: ressressg 12537 |
Copyright terms: Public domain | W3C validator |