| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsabsd | GIF version | ||
| Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.) |
| Ref | Expression |
|---|---|
| setsabsd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| setsabsd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| setsabsd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| setsabsd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| setsabsd | ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsabsd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | setsabsd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 3 | setsabsd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 4 | setsresg 12914 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1250 | . . 3 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
| 6 | 5 | uneq1d 3327 | . 2 ⊢ (𝜑 → (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
| 7 | setsex 12908 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | |
| 8 | 1, 2, 3, 7 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) |
| 9 | setsabsd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 10 | setsvala 12907 | . . 3 ⊢ (((𝑆 sSet 〈𝐴, 𝐵〉) ∈ V ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
| 11 | 8, 2, 9, 10 | syl3anc 1250 | . 2 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
| 12 | setsvala 12907 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
| 13 | 1, 2, 9, 12 | syl3anc 1250 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
| 14 | 6, 11, 13 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∖ cdif 3164 ∪ cun 3165 {csn 3634 〈cop 3637 ↾ cres 4681 (class class class)co 5951 sSet csts 12874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-res 4691 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-sets 12883 |
| This theorem is referenced by: ressressg 12951 |
| Copyright terms: Public domain | W3C validator |