Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsmstsetg | Unicode version |
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.) |
Ref | Expression |
---|---|
setsms.x | |
setsms.d | |
setsms.k | sSet TopSet |
setsmsbasg.m | |
setsmsbasg.d |
Ref | Expression |
---|---|
setsmstsetg | TopSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsmsbasg.m | . . 3 | |
2 | setsmsbasg.d | . . 3 | |
3 | tsetslid 12287 | . . . 4 TopSet Slot TopSet TopSet | |
4 | 3 | setsslid 12187 | . . 3 TopSet sSet TopSet |
5 | 1, 2, 4 | syl2anc 409 | . 2 TopSet sSet TopSet |
6 | setsms.k | . . 3 sSet TopSet | |
7 | 6 | fveq2d 5465 | . 2 TopSet TopSet sSet TopSet |
8 | 5, 7 | eqtr4d 2190 | 1 TopSet |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 wcel 2125 cop 3559 cxp 4577 cres 4581 cfv 5163 (class class class)co 5814 cnx 12134 sSet csts 12135 cbs 12137 TopSetcts 12205 cds 12208 cmopn 12332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1re 7805 ax-addrcl 7808 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-iota 5128 df-fun 5165 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-5 8874 df-6 8875 df-7 8876 df-8 8877 df-9 8878 df-ndx 12140 df-slot 12141 df-sets 12144 df-tset 12218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |