ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmstsetg GIF version

Theorem setsmstsetg 15163
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsmsbasg.m (𝜑𝑀𝑉)
setsmsbasg.d (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
Assertion
Ref Expression
setsmstsetg (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))

Proof of Theorem setsmstsetg
StepHypRef Expression
1 setsmsbasg.m . . 3 (𝜑𝑀𝑉)
2 setsmsbasg.d . . 3 (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
3 tsetslid 13229 . . . 4 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
43setsslid 13091 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
51, 2, 4syl2anc 411 . 2 (𝜑 → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
6 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
76fveq2d 5633 . 2 (𝜑 → (TopSet‘𝐾) = (TopSet‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
85, 7eqtr4d 2265 1 (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cop 3669   × cxp 4717  cres 4721  cfv 5318  (class class class)co 6007  ndxcnx 13037   sSet csts 13038  Basecbs 13040  TopSetcts 13124  distcds 13127  MetOpencmopn 14513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-ndx 13043  df-slot 13044  df-sets 13047  df-tset 13137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator