| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > setsmstsetg | GIF version | ||
| Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.) | 
| Ref | Expression | 
|---|---|
| setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | 
| setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) | 
| setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | 
| setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) | 
| setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | 
| Ref | Expression | 
|---|---|
| setsmstsetg | ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
| 3 | tsetslid 12865 | . . . 4 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 4 | 3 | setsslid 12729 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) | 
| 5 | 1, 2, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) | 
| 6 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
| 7 | 6 | fveq2d 5562 | . 2 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) | 
| 8 | 5, 7 | eqtr4d 2232 | 1 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 〈cop 3625 × cxp 4661 ↾ cres 4665 ‘cfv 5258 (class class class)co 5922 ndxcnx 12675 sSet csts 12676 Basecbs 12678 TopSetcts 12761 distcds 12764 MetOpencmopn 14097 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-ndx 12681 df-slot 12682 df-sets 12685 df-tset 12774 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |