ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlol Unicode version

Theorem caucvgprprlemlol 7255
Description: Lemma for caucvgprpr 7269. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemlol  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Distinct variable groups:    A, m    m, F    F, l    u, F, r    p, l, s   
q, l, s, r   
t, l, p    u, q, s, r    u, p, t, r    ph, r    r, q, t
Allowed substitution hints:    ph( u, t, k, m, n, s, q, p, l)    A( u, t, k, n, s, r, q, p, l)    F( t, k, n, s, q, p)    L( u, t, k, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemlol
Dummy variables  b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6922 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4490 . . . 4  |-  ( s 
<Q  t  ->  ( s  e.  Q.  /\  t  e.  Q. ) )
32simpld 110 . . 3  |-  ( s 
<Q  t  ->  s  e. 
Q. )
433ad2ant2 965 . 2  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  Q. )
5 caucvgprpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
65caucvgprprlemell 7242 . . . . . 6  |-  ( t  e.  ( 1st `  L
)  <->  ( t  e. 
Q.  /\  E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) ) )
76simprbi 269 . . . . 5  |-  ( t  e.  ( 1st `  L
)  ->  E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )
873ad2ant3 966 . . . 4  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )
9 simpll2 983 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  s  <Q  t )
10 ltanqg 6957 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z  +Q  x )  <Q  (
z  +Q  y ) ) )
1110adantl 271 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )  /\  (
x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. ) )  -> 
( x  <Q  y  <->  ( z  +Q  x ) 
<Q  ( z  +Q  y
) ) )
124ad2antrr 472 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  s  e.  Q. )
132simprd 112 . . . . . . . . . . . 12  |-  ( s 
<Q  t  ->  t  e. 
Q. )
14133ad2ant2 965 . . . . . . . . . . 11  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  t  e.  Q. )
1514ad2antrr 472 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  t  e.  Q. )
16 simplr 497 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  b  e.  N. )
17 nnnq 6979 . . . . . . . . . . 11  |-  ( b  e.  N.  ->  [ <. b ,  1o >. ]  ~Q  e.  Q. )
18 recclnq 6949 . . . . . . . . . . 11  |-  ( [
<. b ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )
1916, 17, 183syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e. 
Q. )
20 addcomnqg 6938 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  +Q  y
)  =  ( y  +Q  x ) )
2120adantl 271 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )  /\  (
x  e.  Q.  /\  y  e.  Q. )
)  ->  ( x  +Q  y )  =  ( y  +Q  x ) )
2211, 12, 15, 19, 21caovord2d 5814 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  ( s  <Q  t  <->  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) ) )
239, 22mpbid 145 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) )
24 ltnqpri 7151 . . . . . . . 8  |-  ( ( s  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  ->  <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >. )
2523, 24syl 14 . . . . . . 7  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >. )
26 ltsopr 7153 . . . . . . . 8  |-  <P  Or  P.
27 ltrelpr 7062 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
2826, 27sotri 4827 . . . . . . 7  |-  ( (
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  b )
)
2925, 28sylancom 411 . . . . . 6  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  b )
)
3029ex 113 . . . . 5  |-  ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  ->  ( <. { p  |  p 
<Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )  -> 
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
) )
3130reximdva 2475 . . . 4  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  ( E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  b )  ->  E. b  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
) )
328, 31mpd 13 . . 3  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  E. b  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )
33 opeq1 3622 . . . . . . . . . . 11  |-  ( b  =  r  ->  <. b ,  1o >.  =  <. r ,  1o >. )
3433eceq1d 6326 . . . . . . . . . 10  |-  ( b  =  r  ->  [ <. b ,  1o >. ]  ~Q  =  [ <. r ,  1o >. ]  ~Q  )
3534fveq2d 5309 . . . . . . . . 9  |-  ( b  =  r  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )
3635oveq2d 5668 . . . . . . . 8  |-  ( b  =  r  ->  (
s  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) )
3736breq2d 3857 . . . . . . 7  |-  ( b  =  r  ->  (
p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) ) )
3837abbidv 2205 . . . . . 6  |-  ( b  =  r  ->  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } )
3936breq1d 3855 . . . . . . 7  |-  ( b  =  r  ->  (
( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q ) )
4039abbidv 2205 . . . . . 6  |-  ( b  =  r  ->  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } )
4138, 40opeq12d 3630 . . . . 5  |-  ( b  =  r  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
42 fveq2 5305 . . . . 5  |-  ( b  =  r  ->  ( F `  b )  =  ( F `  r ) )
4341, 42breq12d 3858 . . . 4  |-  ( b  =  r  ->  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
4443cbvrexv 2591 . . 3  |-  ( E. b  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )  <->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
)
4532, 44sylib 120 . 2  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) )
465caucvgprprlemell 7242 . 2  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
474, 45, 46sylanbrc 408 1  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   E.wrex 2360   {crab 2363   <.cop 3449   class class class wbr 3845   -->wf 5011   ` cfv 5015  (class class class)co 5652   1stc1st 5909   1oc1o 6174   [cec 6288   N.cnpi 6829    <N clti 6832    ~Q ceq 6836   Q.cnq 6837    +Q cplq 6839   *Qcrq 6841    <Q cltq 6842   P.cnp 6848    +P. cpp 6850    <P cltp 6852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-pli 6862  df-mi 6863  df-lti 6864  df-plpq 6901  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-plqqs 6906  df-mqqs 6907  df-1nqqs 6908  df-rq 6909  df-ltnqqs 6910  df-inp 7023  df-iltp 7027
This theorem is referenced by:  caucvgprprlemrnd  7258
  Copyright terms: Public domain W3C validator