ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlol Unicode version

Theorem caucvgprprlemlol 7765
Description: Lemma for caucvgprpr 7779. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemlol  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Distinct variable groups:    A, m    m, F    F, l    u, F, r    p, l, s   
q, l, s, r   
t, l, p    u, q, s, r    u, p, t, r    ph, r    r, q, t
Allowed substitution hints:    ph( u, t, k, m, n, s, q, p, l)    A( u, t, k, n, s, r, q, p, l)    F( t, k, n, s, q, p)    L( u, t, k, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemlol
Dummy variables  b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7432 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4715 . . . 4  |-  ( s 
<Q  t  ->  ( s  e.  Q.  /\  t  e.  Q. ) )
32simpld 112 . . 3  |-  ( s 
<Q  t  ->  s  e. 
Q. )
433ad2ant2 1021 . 2  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  Q. )
5 caucvgprpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
65caucvgprprlemell 7752 . . . . . 6  |-  ( t  e.  ( 1st `  L
)  <->  ( t  e. 
Q.  /\  E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) ) )
76simprbi 275 . . . . 5  |-  ( t  e.  ( 1st `  L
)  ->  E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )
873ad2ant3 1022 . . . 4  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )
9 simpll2 1039 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  s  <Q  t )
10 ltanqg 7467 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z  +Q  x )  <Q  (
z  +Q  y ) ) )
1110adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )  /\  (
x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. ) )  -> 
( x  <Q  y  <->  ( z  +Q  x ) 
<Q  ( z  +Q  y
) ) )
124ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  s  e.  Q. )
132simprd 114 . . . . . . . . . . . 12  |-  ( s 
<Q  t  ->  t  e. 
Q. )
14133ad2ant2 1021 . . . . . . . . . . 11  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  t  e.  Q. )
1514ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  t  e.  Q. )
16 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  b  e.  N. )
17 nnnq 7489 . . . . . . . . . . 11  |-  ( b  e.  N.  ->  [ <. b ,  1o >. ]  ~Q  e.  Q. )
18 recclnq 7459 . . . . . . . . . . 11  |-  ( [
<. b ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )
1916, 17, 183syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e. 
Q. )
20 addcomnqg 7448 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  +Q  y
)  =  ( y  +Q  x ) )
2120adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )  /\  (
x  e.  Q.  /\  y  e.  Q. )
)  ->  ( x  +Q  y )  =  ( y  +Q  x ) )
2211, 12, 15, 19, 21caovord2d 6093 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  ( s  <Q  t  <->  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) ) )
239, 22mpbid 147 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) )
24 ltnqpri 7661 . . . . . . . 8  |-  ( ( s  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  ->  <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >. )
2523, 24syl 14 . . . . . . 7  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >. )
26 ltsopr 7663 . . . . . . . 8  |-  <P  Or  P.
27 ltrelpr 7572 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
2826, 27sotri 5065 . . . . . . 7  |-  ( (
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  b )
)
2925, 28sylancom 420 . . . . . 6  |-  ( ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  /\  <. { p  |  p  <Q  ( t  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  b )
)
3029ex 115 . . . . 5  |-  ( ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L
) )  /\  b  e.  N. )  ->  ( <. { p  |  p 
<Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )  -> 
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
) )
3130reximdva 2599 . . . 4  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  ( E. b  e.  N.  <. { p  |  p  <Q  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( t  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  b )  ->  E. b  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )
) )
328, 31mpd 13 . . 3  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  E. b  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  b
) )
33 opeq1 3808 . . . . . . . . . . 11  |-  ( b  =  r  ->  <. b ,  1o >.  =  <. r ,  1o >. )
3433eceq1d 6628 . . . . . . . . . 10  |-  ( b  =  r  ->  [ <. b ,  1o >. ]  ~Q  =  [ <. r ,  1o >. ]  ~Q  )
3534fveq2d 5562 . . . . . . . . 9  |-  ( b  =  r  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )
3635oveq2d 5938 . . . . . . . 8  |-  ( b  =  r  ->  (
s  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) )
3736breq2d 4045 . . . . . . 7  |-  ( b  =  r  ->  (
p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) ) )
3837abbidv 2314 . . . . . 6  |-  ( b  =  r  ->  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } )
3936breq1d 4043 . . . . . . 7  |-  ( b  =  r  ->  (
( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q ) )
4039abbidv 2314 . . . . . 6  |-  ( b  =  r  ->  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } )
4138, 40opeq12d 3816 . . . . 5  |-  ( b  =  r  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
42 fveq2 5558 . . . . 5  |-  ( b  =  r  ->  ( F `  b )  =  ( F `  r ) )
4341, 42breq12d 4046 . . . 4  |-  ( b  =  r  ->  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
4443cbvrexv 2730 . . 3  |-  ( E. b  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  b )  <->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
)
4532, 44sylib 122 . 2  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) )
465caucvgprprlemell 7752 . 2  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
474, 45, 46sylanbrc 417 1  |-  ( (
ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   {crab 2479   <.cop 3625   class class class wbr 4033   -->wf 5254   ` cfv 5258  (class class class)co 5922   1stc1st 6196   1oc1o 6467   [cec 6590   N.cnpi 7339    <N clti 7342    ~Q ceq 7346   Q.cnq 7347    +Q cplq 7349   *Qcrq 7351    <Q cltq 7352   P.cnp 7358    +P. cpp 7360    <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533  df-iltp 7537
This theorem is referenced by:  caucvgprprlemrnd  7768
  Copyright terms: Public domain W3C validator