ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemlol Unicode version

Theorem cauappcvgprlemlol 7759
Description: Lemma for cauappcvgpr 7774. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemlol  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemlol
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7477 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4726 . . . 4  |-  ( s 
<Q  r  ->  ( s  e.  Q.  /\  r  e.  Q. ) )
32simpld 112 . . 3  |-  ( s 
<Q  r  ->  s  e. 
Q. )
433ad2ant2 1021 . 2  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  Q. )
5 oveq1 5950 . . . . . . . 8  |-  ( l  =  r  ->  (
l  +Q  q )  =  ( r  +Q  q ) )
65breq1d 4053 . . . . . . 7  |-  ( l  =  r  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( r  +Q  q )  <Q  ( F `  q )
) )
76rexbidv 2506 . . . . . 6  |-  ( l  =  r  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
) )
8 cauappcvgpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
98fveq2i 5578 . . . . . . 7  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
10 nqex 7475 . . . . . . . . 9  |-  Q.  e.  _V
1110rabex 4187 . . . . . . . 8  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
1210rabex 4187 . . . . . . . 8  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
1311, 12op1st 6231 . . . . . . 7  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
149, 13eqtri 2225 . . . . . 6  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
157, 14elrab2 2931 . . . . 5  |-  ( r  e.  ( 1st `  L
)  <->  ( r  e. 
Q.  /\  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
) )
1615simprbi 275 . . . 4  |-  ( r  e.  ( 1st `  L
)  ->  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
)
17163ad2ant3 1022 . . 3  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
)
18 simpll2 1039 . . . . . . 7  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  q  e.  Q. )  /\  (
r  +Q  q ) 
<Q  ( F `  q
) )  ->  s  <Q  r )
19 ltanqg 7512 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
2019adantl 277 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  /\  q  e.  Q. )  /\  ( r  +Q  q
)  <Q  ( F `  q ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
214ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  q  e.  Q. )  /\  (
r  +Q  q ) 
<Q  ( F `  q
) )  ->  s  e.  Q. )
222simprd 114 . . . . . . . . . 10  |-  ( s 
<Q  r  ->  r  e. 
Q. )
23223ad2ant2 1021 . . . . . . . . 9  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  r  e.  Q. )
2423ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  q  e.  Q. )  /\  (
r  +Q  q ) 
<Q  ( F `  q
) )  ->  r  e.  Q. )
25 simplr 528 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  q  e.  Q. )  /\  (
r  +Q  q ) 
<Q  ( F `  q
) )  ->  q  e.  Q. )
26 addcomnqg 7493 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
2726adantl 277 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  /\  q  e.  Q. )  /\  ( r  +Q  q
)  <Q  ( F `  q ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
2820, 21, 24, 25, 27caovord2d 6115 . . . . . . 7  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  q  e.  Q. )  /\  (
r  +Q  q ) 
<Q  ( F `  q
) )  ->  (
s  <Q  r  <->  ( s  +Q  q )  <Q  (
r  +Q  q ) ) )
2918, 28mpbid 147 . . . . . 6  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  q  e.  Q. )  /\  (
r  +Q  q ) 
<Q  ( F `  q
) )  ->  (
s  +Q  q ) 
<Q  ( r  +Q  q
) )
30 ltsonq 7510 . . . . . . 7  |-  <Q  Or  Q.
3130, 1sotri 5077 . . . . . 6  |-  ( ( ( s  +Q  q
)  <Q  ( r  +Q  q )  /\  (
r  +Q  q ) 
<Q  ( F `  q
) )  ->  (
s  +Q  q ) 
<Q  ( F `  q
) )
3229, 31sylancom 420 . . . . 5  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  q  e.  Q. )  /\  (
r  +Q  q ) 
<Q  ( F `  q
) )  ->  (
s  +Q  q ) 
<Q  ( F `  q
) )
3332ex 115 . . . 4  |-  ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  q  e.  Q. )  ->  (
( r  +Q  q
)  <Q  ( F `  q )  ->  (
s  +Q  q ) 
<Q  ( F `  q
) ) )
3433reximdva 2607 . . 3  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  ( E. q  e.  Q.  (
r  +Q  q ) 
<Q  ( F `  q
)  ->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
3517, 34mpd 13 . 2  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
)
36 oveq1 5950 . . . . 5  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
3736breq1d 4053 . . . 4  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
3837rexbidv 2506 . . 3  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
3938, 14elrab2 2931 . 2  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
404, 35, 39sylanbrc 417 1  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487   <.cop 3635   class class class wbr 4043   -->wf 5266   ` cfv 5270  (class class class)co 5943   1stc1st 6223   Q.cnq 7392    +Q cplq 7394    <Q cltq 7397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-ltnqqs 7465
This theorem is referenced by:  cauappcvgprlemrnd  7762
  Copyright terms: Public domain W3C validator