Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cauappcvgprlemlol | Unicode version |
Description: Lemma for cauappcvgpr 7613. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.) |
Ref | Expression |
---|---|
cauappcvgpr.f | |
cauappcvgpr.app | |
cauappcvgpr.bnd | |
cauappcvgpr.lim |
Ref | Expression |
---|---|
cauappcvgprlemlol |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7316 | . . . . 5 | |
2 | 1 | brel 4661 | . . . 4 |
3 | 2 | simpld 111 | . . 3 |
4 | 3 | 3ad2ant2 1014 | . 2 |
5 | oveq1 5858 | . . . . . . . 8 | |
6 | 5 | breq1d 3997 | . . . . . . 7 |
7 | 6 | rexbidv 2471 | . . . . . 6 |
8 | cauappcvgpr.lim | . . . . . . . 8 | |
9 | 8 | fveq2i 5497 | . . . . . . 7 |
10 | nqex 7314 | . . . . . . . . 9 | |
11 | 10 | rabex 4131 | . . . . . . . 8 |
12 | 10 | rabex 4131 | . . . . . . . 8 |
13 | 11, 12 | op1st 6123 | . . . . . . 7 |
14 | 9, 13 | eqtri 2191 | . . . . . 6 |
15 | 7, 14 | elrab2 2889 | . . . . 5 |
16 | 15 | simprbi 273 | . . . 4 |
17 | 16 | 3ad2ant3 1015 | . . 3 |
18 | simpll2 1032 | . . . . . . 7 | |
19 | ltanqg 7351 | . . . . . . . . 9 | |
20 | 19 | adantl 275 | . . . . . . . 8 |
21 | 4 | ad2antrr 485 | . . . . . . . 8 |
22 | 2 | simprd 113 | . . . . . . . . . 10 |
23 | 22 | 3ad2ant2 1014 | . . . . . . . . 9 |
24 | 23 | ad2antrr 485 | . . . . . . . 8 |
25 | simplr 525 | . . . . . . . 8 | |
26 | addcomnqg 7332 | . . . . . . . . 9 | |
27 | 26 | adantl 275 | . . . . . . . 8 |
28 | 20, 21, 24, 25, 27 | caovord2d 6020 | . . . . . . 7 |
29 | 18, 28 | mpbid 146 | . . . . . 6 |
30 | ltsonq 7349 | . . . . . . 7 | |
31 | 30, 1 | sotri 5004 | . . . . . 6 |
32 | 29, 31 | sylancom 418 | . . . . 5 |
33 | 32 | ex 114 | . . . 4 |
34 | 33 | reximdva 2572 | . . 3 |
35 | 17, 34 | mpd 13 | . 2 |
36 | oveq1 5858 | . . . . 5 | |
37 | 36 | breq1d 3997 | . . . 4 |
38 | 37 | rexbidv 2471 | . . 3 |
39 | 38, 14 | elrab2 2889 | . 2 |
40 | 4, 35, 39 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 cop 3584 class class class wbr 3987 wf 5192 cfv 5196 (class class class)co 5851 c1st 6115 cnq 7231 cplq 7233 cltq 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-eprel 4272 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-oadd 6397 df-omul 6398 df-er 6510 df-ec 6512 df-qs 6516 df-ni 7255 df-pli 7256 df-mi 7257 df-lti 7258 df-plpq 7295 df-enq 7298 df-nqqs 7299 df-plqqs 7300 df-ltnqqs 7304 |
This theorem is referenced by: cauappcvgprlemrnd 7601 |
Copyright terms: Public domain | W3C validator |