ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre Unicode version

Theorem qbtwnre 10363
Description: The rational numbers are dense in  RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnre
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
2 simp1 999 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
31, 2resubcld 8424 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR )
4 simp3 1001 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  <  B )
52, 1posdifd 8576 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
64, 5mpbid 147 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  0  <  ( B  -  A
) )
7 nnrecl 9264 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  ->  E. n  e.  NN  ( 1  /  n
)  <  ( B  -  A ) )
83, 6, 7syl2anc 411 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. n  e.  NN  ( 1  /  n )  <  ( B  -  A )
)
92adantr 276 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  A  e.  RR )
10 2re 9077 . . . . . . 7  |-  2  e.  RR
1110a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  2  e.  RR )
12 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  NN )
1312nnred 9020 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  RR )
1411, 13remulcld 8074 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( 2  x.  n )  e.  RR )
159, 14remulcld 8074 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( A  x.  ( 2  x.  n
) )  e.  RR )
16 rebtwn2z 10361 . . . 4  |-  ( ( A  x.  ( 2  x.  n ) )  e.  RR  ->  E. m  e.  ZZ  ( m  < 
( A  x.  (
2  x.  n ) )  /\  ( A  x.  ( 2  x.  n ) )  < 
( m  +  2 ) ) )
1715, 16syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. m  e.  ZZ  ( m  <  ( A  x.  ( 2  x.  n ) )  /\  ( A  x.  (
2  x.  n ) )  <  ( m  +  2 ) ) )
18 simprl 529 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  e.  ZZ )
19 2z 9371 . . . . . . 7  |-  2  e.  ZZ
2019a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  ZZ )
2118, 20zaddcld 9469 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  ZZ )
22 2nn 9169 . . . . . . 7  |-  2  e.  NN
2322a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  NN )
2412adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  n  e.  NN )
2523, 24nnmulcld 9056 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  NN )
26 znq 9715 . . . . 5  |-  ( ( ( m  +  2 )  e.  ZZ  /\  ( 2  x.  n
)  e.  NN )  ->  ( ( m  +  2 )  / 
( 2  x.  n
) )  e.  QQ )
2721, 25, 26syl2anc 411 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  e.  QQ )
28 simprrr 540 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( A  x.  ( 2  x.  n
) )  <  (
m  +  2 ) )
299adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  e.  RR )
3021zred 9465 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  RR )
3125nnrpd 9786 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  RR+ )
3229, 30, 31ltmuldivd 9836 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 )  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
3328, 32mpbid 147 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) )
34 simpll2 1039 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  B  e.  RR )
35 simprrl 539 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  <  ( A  x.  ( 2  x.  n ) ) )
36 simplrr 536 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 1  /  n )  < 
( B  -  A
) )
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 10362 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B )
38 breq2 4038 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  ( A  <  x  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
39 breq1 4037 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
x  <  B  <->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B ) )
4038, 39anbi12d 473 . . . . 5  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  (
( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  +  2 )  / 
( 2  x.  n
) )  <  B
) ) )
4140rspcev 2868 . . . 4  |-  ( ( ( ( m  + 
2 )  /  (
2  x.  n ) )  e.  QQ  /\  ( A  <  ( ( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  + 
2 )  /  (
2  x.  n ) )  <  B ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4227, 33, 37, 41syl12anc 1247 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4317, 42rexlimddv 2619 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
448, 43rexlimddv 2619 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    - cmin 8214    / cdiv 8716   NNcn 9007   2c2 9058   ZZcz 9343   QQcq 9710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746
This theorem is referenced by:  qbtwnxr  10364  qdenre  11384  expcnvre  11685
  Copyright terms: Public domain W3C validator