ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre Unicode version

Theorem qbtwnre 10213
Description: The rational numbers are dense in  RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnre
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 993 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
2 simp1 992 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
31, 2resubcld 8300 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR )
4 simp3 994 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  <  B )
52, 1posdifd 8451 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
64, 5mpbid 146 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  0  <  ( B  -  A
) )
7 nnrecl 9133 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  ->  E. n  e.  NN  ( 1  /  n
)  <  ( B  -  A ) )
83, 6, 7syl2anc 409 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. n  e.  NN  ( 1  /  n )  <  ( B  -  A )
)
92adantr 274 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  A  e.  RR )
10 2re 8948 . . . . . . 7  |-  2  e.  RR
1110a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  2  e.  RR )
12 simprl 526 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  NN )
1312nnred 8891 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  RR )
1411, 13remulcld 7950 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( 2  x.  n )  e.  RR )
159, 14remulcld 7950 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( A  x.  ( 2  x.  n
) )  e.  RR )
16 rebtwn2z 10211 . . . 4  |-  ( ( A  x.  ( 2  x.  n ) )  e.  RR  ->  E. m  e.  ZZ  ( m  < 
( A  x.  (
2  x.  n ) )  /\  ( A  x.  ( 2  x.  n ) )  < 
( m  +  2 ) ) )
1715, 16syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. m  e.  ZZ  ( m  <  ( A  x.  ( 2  x.  n ) )  /\  ( A  x.  (
2  x.  n ) )  <  ( m  +  2 ) ) )
18 simprl 526 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  e.  ZZ )
19 2z 9240 . . . . . . 7  |-  2  e.  ZZ
2019a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  ZZ )
2118, 20zaddcld 9338 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  ZZ )
22 2nn 9039 . . . . . . 7  |-  2  e.  NN
2322a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  NN )
2412adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  n  e.  NN )
2523, 24nnmulcld 8927 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  NN )
26 znq 9583 . . . . 5  |-  ( ( ( m  +  2 )  e.  ZZ  /\  ( 2  x.  n
)  e.  NN )  ->  ( ( m  +  2 )  / 
( 2  x.  n
) )  e.  QQ )
2721, 25, 26syl2anc 409 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  e.  QQ )
28 simprrr 535 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( A  x.  ( 2  x.  n
) )  <  (
m  +  2 ) )
299adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  e.  RR )
3021zred 9334 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  RR )
3125nnrpd 9651 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  RR+ )
3229, 30, 31ltmuldivd 9701 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 )  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
3328, 32mpbid 146 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) )
34 simpll2 1032 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  B  e.  RR )
35 simprrl 534 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  <  ( A  x.  ( 2  x.  n ) ) )
36 simplrr 531 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 1  /  n )  < 
( B  -  A
) )
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 10212 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B )
38 breq2 3993 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  ( A  <  x  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
39 breq1 3992 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
x  <  B  <->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B ) )
4038, 39anbi12d 470 . . . . 5  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  (
( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  +  2 )  / 
( 2  x.  n
) )  <  B
) ) )
4140rspcev 2834 . . . 4  |-  ( ( ( ( m  + 
2 )  /  (
2  x.  n ) )  e.  QQ  /\  ( A  <  ( ( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  + 
2 )  /  (
2  x.  n ) )  <  B ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4227, 33, 37, 41syl12anc 1231 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4317, 42rexlimddv 2592 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
448, 43rexlimddv 2592 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3989  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    - cmin 8090    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212   QQcq 9578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611
This theorem is referenced by:  qbtwnxr  10214  qdenre  11166  expcnvre  11466
  Copyright terms: Public domain W3C validator