ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre Unicode version

Theorem qbtwnre 10034
Description: The rational numbers are dense in  RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnre
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 982 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
2 simp1 981 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
31, 2resubcld 8143 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR )
4 simp3 983 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  <  B )
52, 1posdifd 8294 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
64, 5mpbid 146 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  0  <  ( B  -  A
) )
7 nnrecl 8975 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  ->  E. n  e.  NN  ( 1  /  n
)  <  ( B  -  A ) )
83, 6, 7syl2anc 408 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. n  e.  NN  ( 1  /  n )  <  ( B  -  A )
)
92adantr 274 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  A  e.  RR )
10 2re 8790 . . . . . . 7  |-  2  e.  RR
1110a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  2  e.  RR )
12 simprl 520 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  NN )
1312nnred 8733 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  RR )
1411, 13remulcld 7796 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( 2  x.  n )  e.  RR )
159, 14remulcld 7796 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( A  x.  ( 2  x.  n
) )  e.  RR )
16 rebtwn2z 10032 . . . 4  |-  ( ( A  x.  ( 2  x.  n ) )  e.  RR  ->  E. m  e.  ZZ  ( m  < 
( A  x.  (
2  x.  n ) )  /\  ( A  x.  ( 2  x.  n ) )  < 
( m  +  2 ) ) )
1715, 16syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. m  e.  ZZ  ( m  <  ( A  x.  ( 2  x.  n ) )  /\  ( A  x.  (
2  x.  n ) )  <  ( m  +  2 ) ) )
18 simprl 520 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  e.  ZZ )
19 2z 9082 . . . . . . 7  |-  2  e.  ZZ
2019a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  ZZ )
2118, 20zaddcld 9177 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  ZZ )
22 2nn 8881 . . . . . . 7  |-  2  e.  NN
2322a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  NN )
2412adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  n  e.  NN )
2523, 24nnmulcld 8769 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  NN )
26 znq 9416 . . . . 5  |-  ( ( ( m  +  2 )  e.  ZZ  /\  ( 2  x.  n
)  e.  NN )  ->  ( ( m  +  2 )  / 
( 2  x.  n
) )  e.  QQ )
2721, 25, 26syl2anc 408 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  e.  QQ )
28 simprrr 529 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( A  x.  ( 2  x.  n
) )  <  (
m  +  2 ) )
299adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  e.  RR )
3021zred 9173 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  RR )
3125nnrpd 9482 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  RR+ )
3229, 30, 31ltmuldivd 9531 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 )  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
3328, 32mpbid 146 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) )
34 simpll2 1021 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  B  e.  RR )
35 simprrl 528 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  <  ( A  x.  ( 2  x.  n ) ) )
36 simplrr 525 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 1  /  n )  < 
( B  -  A
) )
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 10033 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B )
38 breq2 3933 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  ( A  <  x  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
39 breq1 3932 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
x  <  B  <->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B ) )
4038, 39anbi12d 464 . . . . 5  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  (
( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  +  2 )  / 
( 2  x.  n
) )  <  B
) ) )
4140rspcev 2789 . . . 4  |-  ( ( ( ( m  + 
2 )  /  (
2  x.  n ) )  e.  QQ  /\  ( A  <  ( ( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  + 
2 )  /  (
2  x.  n ) )  <  B ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4227, 33, 37, 41syl12anc 1214 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4317, 42rexlimddv 2554 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
448, 43rexlimddv 2554 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417   class class class wbr 3929  (class class class)co 5774   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    - cmin 7933    / cdiv 8432   NNcn 8720   2c2 8771   ZZcz 9054   QQcq 9411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442
This theorem is referenced by:  qbtwnxr  10035  qdenre  10974  expcnvre  11272
  Copyright terms: Public domain W3C validator