ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre Unicode version

Theorem qbtwnre 10256
Description: The rational numbers are dense in  RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnre
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 998 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
2 simp1 997 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
31, 2resubcld 8337 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR )
4 simp3 999 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  <  B )
52, 1posdifd 8488 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
64, 5mpbid 147 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  0  <  ( B  -  A
) )
7 nnrecl 9173 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  ->  E. n  e.  NN  ( 1  /  n
)  <  ( B  -  A ) )
83, 6, 7syl2anc 411 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. n  e.  NN  ( 1  /  n )  <  ( B  -  A )
)
92adantr 276 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  A  e.  RR )
10 2re 8988 . . . . . . 7  |-  2  e.  RR
1110a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  2  e.  RR )
12 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  NN )
1312nnred 8931 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  RR )
1411, 13remulcld 7987 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( 2  x.  n )  e.  RR )
159, 14remulcld 7987 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( A  x.  ( 2  x.  n
) )  e.  RR )
16 rebtwn2z 10254 . . . 4  |-  ( ( A  x.  ( 2  x.  n ) )  e.  RR  ->  E. m  e.  ZZ  ( m  < 
( A  x.  (
2  x.  n ) )  /\  ( A  x.  ( 2  x.  n ) )  < 
( m  +  2 ) ) )
1715, 16syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. m  e.  ZZ  ( m  <  ( A  x.  ( 2  x.  n ) )  /\  ( A  x.  (
2  x.  n ) )  <  ( m  +  2 ) ) )
18 simprl 529 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  e.  ZZ )
19 2z 9280 . . . . . . 7  |-  2  e.  ZZ
2019a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  ZZ )
2118, 20zaddcld 9378 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  ZZ )
22 2nn 9079 . . . . . . 7  |-  2  e.  NN
2322a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  NN )
2412adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  n  e.  NN )
2523, 24nnmulcld 8967 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  NN )
26 znq 9623 . . . . 5  |-  ( ( ( m  +  2 )  e.  ZZ  /\  ( 2  x.  n
)  e.  NN )  ->  ( ( m  +  2 )  / 
( 2  x.  n
) )  e.  QQ )
2721, 25, 26syl2anc 411 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  e.  QQ )
28 simprrr 540 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( A  x.  ( 2  x.  n
) )  <  (
m  +  2 ) )
299adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  e.  RR )
3021zred 9374 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  RR )
3125nnrpd 9693 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  RR+ )
3229, 30, 31ltmuldivd 9743 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 )  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
3328, 32mpbid 147 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) )
34 simpll2 1037 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  B  e.  RR )
35 simprrl 539 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  <  ( A  x.  ( 2  x.  n ) ) )
36 simplrr 536 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 1  /  n )  < 
( B  -  A
) )
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 10255 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B )
38 breq2 4007 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  ( A  <  x  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
39 breq1 4006 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
x  <  B  <->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B ) )
4038, 39anbi12d 473 . . . . 5  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  (
( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  +  2 )  / 
( 2  x.  n
) )  <  B
) ) )
4140rspcev 2841 . . . 4  |-  ( ( ( ( m  + 
2 )  /  (
2  x.  n ) )  e.  QQ  /\  ( A  <  ( ( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  + 
2 )  /  (
2  x.  n ) )  <  B ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4227, 33, 37, 41syl12anc 1236 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4317, 42rexlimddv 2599 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
448, 43rexlimddv 2599 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4003  (class class class)co 5874   RRcr 7809   0cc0 7810   1c1 7811    + caddc 7813    x. cmul 7815    < clt 7991    - cmin 8127    / cdiv 8628   NNcn 8918   2c2 8969   ZZcz 9252   QQcq 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653
This theorem is referenced by:  qbtwnxr  10257  qdenre  11210  expcnvre  11510
  Copyright terms: Public domain W3C validator