ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre Unicode version

Theorem qbtwnre 9927
Description: The rational numbers are dense in  RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnre
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 965 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
2 simp1 964 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
31, 2resubcld 8062 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR )
4 simp3 966 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  <  B )
52, 1posdifd 8212 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
64, 5mpbid 146 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  0  <  ( B  -  A
) )
7 nnrecl 8879 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  ->  E. n  e.  NN  ( 1  /  n
)  <  ( B  -  A ) )
83, 6, 7syl2anc 406 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. n  e.  NN  ( 1  /  n )  <  ( B  -  A )
)
92adantr 272 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  A  e.  RR )
10 2re 8700 . . . . . . 7  |-  2  e.  RR
1110a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  2  e.  RR )
12 simprl 503 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  NN )
1312nnred 8643 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  n  e.  RR )
1411, 13remulcld 7720 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( 2  x.  n )  e.  RR )
159, 14remulcld 7720 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  ( A  x.  ( 2  x.  n
) )  e.  RR )
16 rebtwn2z 9925 . . . 4  |-  ( ( A  x.  ( 2  x.  n ) )  e.  RR  ->  E. m  e.  ZZ  ( m  < 
( A  x.  (
2  x.  n ) )  /\  ( A  x.  ( 2  x.  n ) )  < 
( m  +  2 ) ) )
1715, 16syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. m  e.  ZZ  ( m  <  ( A  x.  ( 2  x.  n ) )  /\  ( A  x.  (
2  x.  n ) )  <  ( m  +  2 ) ) )
18 simprl 503 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  e.  ZZ )
19 2z 8986 . . . . . . 7  |-  2  e.  ZZ
2019a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  ZZ )
2118, 20zaddcld 9081 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  ZZ )
22 2nn 8785 . . . . . . 7  |-  2  e.  NN
2322a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  2  e.  NN )
2412adantr 272 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  n  e.  NN )
2523, 24nnmulcld 8679 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  NN )
26 znq 9318 . . . . 5  |-  ( ( ( m  +  2 )  e.  ZZ  /\  ( 2  x.  n
)  e.  NN )  ->  ( ( m  +  2 )  / 
( 2  x.  n
) )  e.  QQ )
2721, 25, 26syl2anc 406 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  e.  QQ )
28 simprrr 512 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( A  x.  ( 2  x.  n
) )  <  (
m  +  2 ) )
299adantr 272 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  e.  RR )
3021zred 9077 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( m  +  2 )  e.  RR )
3125nnrpd 9381 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 2  x.  n )  e.  RR+ )
3229, 30, 31ltmuldivd 9430 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 )  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
3328, 32mpbid 146 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) )
34 simpll2 1004 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  B  e.  RR )
35 simprrl 511 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  m  <  ( A  x.  ( 2  x.  n ) ) )
36 simplrr 508 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( 1  /  n )  < 
( B  -  A
) )
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 9926 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B )
38 breq2 3899 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  ( A  <  x  <->  A  <  ( ( m  +  2 )  /  ( 2  x.  n ) ) ) )
39 breq1 3898 . . . . . 6  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
x  <  B  <->  ( (
m  +  2 )  /  ( 2  x.  n ) )  < 
B ) )
4038, 39anbi12d 462 . . . . 5  |-  ( x  =  ( ( m  +  2 )  / 
( 2  x.  n
) )  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  (
( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  +  2 )  / 
( 2  x.  n
) )  <  B
) ) )
4140rspcev 2760 . . . 4  |-  ( ( ( ( m  + 
2 )  /  (
2  x.  n ) )  e.  QQ  /\  ( A  <  ( ( m  +  2 )  /  ( 2  x.  n ) )  /\  ( ( m  + 
2 )  /  (
2  x.  n ) )  <  B ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4227, 33, 37, 41syl12anc 1197 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  < 
B )  /\  (
n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  /\  ( m  e.  ZZ  /\  ( m  <  ( A  x.  ( 2  x.  n
) )  /\  ( A  x.  ( 2  x.  n ) )  <  ( m  + 
2 ) ) ) )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
4317, 42rexlimddv 2528 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( n  e.  NN  /\  ( 1  /  n
)  <  ( B  -  A ) ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
448, 43rexlimddv 2528 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463   E.wrex 2391   class class class wbr 3895  (class class class)co 5728   RRcr 7546   0cc0 7547   1c1 7548    + caddc 7550    x. cmul 7552    < clt 7724    - cmin 7856    / cdiv 8345   NNcn 8630   2c2 8681   ZZcz 8958   QQcq 9313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-po 4178  df-iso 4179  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344
This theorem is referenced by:  qbtwnxr  9928  qdenre  10866  expcnvre  11164
  Copyright terms: Public domain W3C validator