ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidceq Unicode version

Theorem fidceq 6771
Description: Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that  { B ,  C } is finite would require showing it is equinumerous to  1o or to  2o but to show that you'd need to know  B  =  C or  -.  B  =  C, respectively. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
fidceq  |-  ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  A )  -> DECID  B  =  C )

Proof of Theorem fidceq
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6663 . . . 4  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
21biimpi 119 . . 3  |-  ( A  e.  Fin  ->  E. x  e.  om  A  ~~  x
)
323ad2ant1 1003 . 2  |-  ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  A )  ->  E. x  e.  om  A  ~~  x )
4 bren 6649 . . . . 5  |-  ( A 
~~  x  <->  E. f 
f : A -1-1-onto-> x )
54biimpi 119 . . . 4  |-  ( A 
~~  x  ->  E. f 
f : A -1-1-onto-> x )
65ad2antll 483 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  A )  /\  ( x  e.  om  /\  A  ~~  x ) )  ->  E. f 
f : A -1-1-onto-> x )
7 f1of 5375 . . . . . . . . . 10  |-  ( f : A -1-1-onto-> x  ->  f : A --> x )
87adantl 275 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  f : A --> x )
9 simpll2 1022 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  B  e.  A )
108, 9ffvelrnd 5564 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  (
f `  B )  e.  x )
11 simplrl 525 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  x  e.  om )
12 elnn 4527 . . . . . . . 8  |-  ( ( ( f `  B
)  e.  x  /\  x  e.  om )  ->  ( f `  B
)  e.  om )
1310, 11, 12syl2anc 409 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  (
f `  B )  e.  om )
14 simpll3 1023 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  C  e.  A )
158, 14ffvelrnd 5564 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  (
f `  C )  e.  x )
16 elnn 4527 . . . . . . . 8  |-  ( ( ( f `  C
)  e.  x  /\  x  e.  om )  ->  ( f `  C
)  e.  om )
1715, 11, 16syl2anc 409 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  (
f `  C )  e.  om )
18 nndceq 6403 . . . . . . 7  |-  ( ( ( f `  B
)  e.  om  /\  ( f `  C
)  e.  om )  -> DECID  ( f `  B )  =  ( f `  C ) )
1913, 17, 18syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  -> DECID  ( f `  B
)  =  ( f `
 C ) )
20 exmiddc 822 . . . . . 6  |-  (DECID  ( f `
 B )  =  ( f `  C
)  ->  ( (
f `  B )  =  ( f `  C )  \/  -.  ( f `  B
)  =  ( f `
 C ) ) )
2119, 20syl 14 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  (
( f `  B
)  =  ( f `
 C )  \/ 
-.  ( f `  B )  =  ( f `  C ) ) )
22 f1of1 5374 . . . . . . . 8  |-  ( f : A -1-1-onto-> x  ->  f : A -1-1-> x )
2322adantl 275 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  f : A -1-1-> x )
24 f1veqaeq 5678 . . . . . . 7  |-  ( ( f : A -1-1-> x  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( f `  B
)  =  ( f `
 C )  ->  B  =  C )
)
2523, 9, 14, 24syl12anc 1215 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  (
( f `  B
)  =  ( f `
 C )  ->  B  =  C )
)
26 fveq2 5429 . . . . . . . 8  |-  ( B  =  C  ->  (
f `  B )  =  ( f `  C ) )
2726con3i 622 . . . . . . 7  |-  ( -.  ( f `  B
)  =  ( f `
 C )  ->  -.  B  =  C
)
2827a1i 9 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  ( -.  ( f `  B
)  =  ( f `
 C )  ->  -.  B  =  C
) )
2925, 28orim12d 776 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  (
( ( f `  B )  =  ( f `  C )  \/  -.  ( f `
 B )  =  ( f `  C
) )  ->  ( B  =  C  \/  -.  B  =  C
) ) )
3021, 29mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  ->  ( B  =  C  \/  -.  B  =  C
) )
31 df-dc 821 . . . 4  |-  (DECID  B  =  C  <->  ( B  =  C  \/  -.  B  =  C ) )
3230, 31sylibr 133 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A  /\  C  e.  A
)  /\  ( x  e.  om  /\  A  ~~  x ) )  /\  f : A -1-1-onto-> x )  -> DECID  B  =  C
)
336, 32exlimddv 1871 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  A )  /\  ( x  e.  om  /\  A  ~~  x ) )  -> DECID  B  =  C
)
343, 33rexlimddv 2557 1  |-  ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  A )  -> DECID  B  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    /\ w3a 963    = wceq 1332   E.wex 1469    e. wcel 1481   E.wrex 2418   class class class wbr 3937   omcom 4512   -->wf 5127   -1-1->wf1 5128   -1-1-onto->wf1o 5130   ` cfv 5131    ~~ cen 6640   Fincfn 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-en 6643  df-fin 6645
This theorem is referenced by:  fidifsnen  6772  fidifsnid  6773  unfiexmid  6814  undiffi  6821  fidcenumlemim  6848
  Copyright terms: Public domain W3C validator