| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidceq | Unicode version | ||
| Description: Equality of members of a
finite set is decidable. This may be
counterintuitive: cannot any two sets be elements of a finite set?
Well, to show, for example, that |
| Ref | Expression |
|---|---|
| fidceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6870 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | 3ad2ant1 1021 |
. 2
|
| 4 | bren 6853 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 5 | ad2antll 491 |
. . 3
|
| 7 | f1of 5539 |
. . . . . . . . . 10
| |
| 8 | 7 | adantl 277 |
. . . . . . . . 9
|
| 9 | simpll2 1040 |
. . . . . . . . 9
| |
| 10 | 8, 9 | ffvelcdmd 5734 |
. . . . . . . 8
|
| 11 | simplrl 535 |
. . . . . . . 8
| |
| 12 | elnn 4667 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | syl2anc 411 |
. . . . . . 7
|
| 14 | simpll3 1041 |
. . . . . . . . 9
| |
| 15 | 8, 14 | ffvelcdmd 5734 |
. . . . . . . 8
|
| 16 | elnn 4667 |
. . . . . . . 8
| |
| 17 | 15, 11, 16 | syl2anc 411 |
. . . . . . 7
|
| 18 | nndceq 6603 |
. . . . . . 7
| |
| 19 | 13, 17, 18 | syl2anc 411 |
. . . . . 6
|
| 20 | exmiddc 838 |
. . . . . 6
| |
| 21 | 19, 20 | syl 14 |
. . . . 5
|
| 22 | f1of1 5538 |
. . . . . . . 8
| |
| 23 | 22 | adantl 277 |
. . . . . . 7
|
| 24 | f1veqaeq 5856 |
. . . . . . 7
| |
| 25 | 23, 9, 14, 24 | syl12anc 1248 |
. . . . . 6
|
| 26 | fveq2 5594 |
. . . . . . . 8
| |
| 27 | 26 | con3i 633 |
. . . . . . 7
|
| 28 | 27 | a1i 9 |
. . . . . 6
|
| 29 | 25, 28 | orim12d 788 |
. . . . 5
|
| 30 | 21, 29 | mpd 13 |
. . . 4
|
| 31 | df-dc 837 |
. . . 4
| |
| 32 | 30, 31 | sylibr 134 |
. . 3
|
| 33 | 6, 32 | exlimddv 1923 |
. 2
|
| 34 | 3, 33 | rexlimddv 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-en 6846 df-fin 6848 |
| This theorem is referenced by: fidifsnen 6988 fidifsnid 6989 pw1fin 7028 unfiexmid 7036 undiffi 7043 fidcenumlemim 7075 |
| Copyright terms: Public domain | W3C validator |