| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidceq | Unicode version | ||
| Description: Equality of members of a
finite set is decidable. This may be
counterintuitive: cannot any two sets be elements of a finite set?
Well, to show, for example, that |
| Ref | Expression |
|---|---|
| fidceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6910 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | 3ad2ant1 1042 |
. 2
|
| 4 | bren 6893 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 5 | ad2antll 491 |
. . 3
|
| 7 | f1of 5571 |
. . . . . . . . . 10
| |
| 8 | 7 | adantl 277 |
. . . . . . . . 9
|
| 9 | simpll2 1061 |
. . . . . . . . 9
| |
| 10 | 8, 9 | ffvelcdmd 5770 |
. . . . . . . 8
|
| 11 | simplrl 535 |
. . . . . . . 8
| |
| 12 | elnn 4697 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | syl2anc 411 |
. . . . . . 7
|
| 14 | simpll3 1062 |
. . . . . . . . 9
| |
| 15 | 8, 14 | ffvelcdmd 5770 |
. . . . . . . 8
|
| 16 | elnn 4697 |
. . . . . . . 8
| |
| 17 | 15, 11, 16 | syl2anc 411 |
. . . . . . 7
|
| 18 | nndceq 6643 |
. . . . . . 7
| |
| 19 | 13, 17, 18 | syl2anc 411 |
. . . . . 6
|
| 20 | exmiddc 841 |
. . . . . 6
| |
| 21 | 19, 20 | syl 14 |
. . . . 5
|
| 22 | f1of1 5570 |
. . . . . . . 8
| |
| 23 | 22 | adantl 277 |
. . . . . . 7
|
| 24 | f1veqaeq 5892 |
. . . . . . 7
| |
| 25 | 23, 9, 14, 24 | syl12anc 1269 |
. . . . . 6
|
| 26 | fveq2 5626 |
. . . . . . . 8
| |
| 27 | 26 | con3i 635 |
. . . . . . 7
|
| 28 | 27 | a1i 9 |
. . . . . 6
|
| 29 | 25, 28 | orim12d 791 |
. . . . 5
|
| 30 | 21, 29 | mpd 13 |
. . . 4
|
| 31 | df-dc 840 |
. . . 4
| |
| 32 | 30, 31 | sylibr 134 |
. . 3
|
| 33 | 6, 32 | exlimddv 1945 |
. 2
|
| 34 | 3, 33 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-en 6886 df-fin 6888 |
| This theorem is referenced by: fidifsnen 7028 fidifsnid 7029 pw1fin 7068 unfiexmid 7076 undiffi 7083 fidcenumlemim 7115 |
| Copyright terms: Public domain | W3C validator |