Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fidceq | Unicode version |
Description: Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that is finite would require showing it is equinumerous to or to but to show that you'd need to know or , respectively. (Contributed by Jim Kingdon, 5-Sep-2021.) |
Ref | Expression |
---|---|
fidceq | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6727 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | 3ad2ant1 1008 | . 2 |
4 | bren 6713 | . . . . 5 | |
5 | 4 | biimpi 119 | . . . 4 |
6 | 5 | ad2antll 483 | . . 3 |
7 | f1of 5432 | . . . . . . . . . 10 | |
8 | 7 | adantl 275 | . . . . . . . . 9 |
9 | simpll2 1027 | . . . . . . . . 9 | |
10 | 8, 9 | ffvelrnd 5621 | . . . . . . . 8 |
11 | simplrl 525 | . . . . . . . 8 | |
12 | elnn 4583 | . . . . . . . 8 | |
13 | 10, 11, 12 | syl2anc 409 | . . . . . . 7 |
14 | simpll3 1028 | . . . . . . . . 9 | |
15 | 8, 14 | ffvelrnd 5621 | . . . . . . . 8 |
16 | elnn 4583 | . . . . . . . 8 | |
17 | 15, 11, 16 | syl2anc 409 | . . . . . . 7 |
18 | nndceq 6467 | . . . . . . 7 DECID | |
19 | 13, 17, 18 | syl2anc 409 | . . . . . 6 DECID |
20 | exmiddc 826 | . . . . . 6 DECID | |
21 | 19, 20 | syl 14 | . . . . 5 |
22 | f1of1 5431 | . . . . . . . 8 | |
23 | 22 | adantl 275 | . . . . . . 7 |
24 | f1veqaeq 5737 | . . . . . . 7 | |
25 | 23, 9, 14, 24 | syl12anc 1226 | . . . . . 6 |
26 | fveq2 5486 | . . . . . . . 8 | |
27 | 26 | con3i 622 | . . . . . . 7 |
28 | 27 | a1i 9 | . . . . . 6 |
29 | 25, 28 | orim12d 776 | . . . . 5 |
30 | 21, 29 | mpd 13 | . . . 4 |
31 | df-dc 825 | . . . 4 DECID | |
32 | 30, 31 | sylibr 133 | . . 3 DECID |
33 | 6, 32 | exlimddv 1886 | . 2 DECID |
34 | 3, 33 | rexlimddv 2588 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 w3a 968 wceq 1343 wex 1480 wcel 2136 wrex 2445 class class class wbr 3982 com 4567 wf 5184 wf1 5185 wf1o 5187 cfv 5188 cen 6704 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-en 6707 df-fin 6709 |
This theorem is referenced by: fidifsnen 6836 fidifsnid 6837 pw1fin 6876 unfiexmid 6883 undiffi 6890 fidcenumlemim 6917 |
Copyright terms: Public domain | W3C validator |