| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidceq | Unicode version | ||
| Description: Equality of members of a
finite set is decidable. This may be
counterintuitive: cannot any two sets be elements of a finite set?
Well, to show, for example, that |
| Ref | Expression |
|---|---|
| fidceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6851 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | 3ad2ant1 1020 |
. 2
|
| 4 | bren 6834 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 5 | ad2antll 491 |
. . 3
|
| 7 | f1of 5521 |
. . . . . . . . . 10
| |
| 8 | 7 | adantl 277 |
. . . . . . . . 9
|
| 9 | simpll2 1039 |
. . . . . . . . 9
| |
| 10 | 8, 9 | ffvelcdmd 5715 |
. . . . . . . 8
|
| 11 | simplrl 535 |
. . . . . . . 8
| |
| 12 | elnn 4653 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | syl2anc 411 |
. . . . . . 7
|
| 14 | simpll3 1040 |
. . . . . . . . 9
| |
| 15 | 8, 14 | ffvelcdmd 5715 |
. . . . . . . 8
|
| 16 | elnn 4653 |
. . . . . . . 8
| |
| 17 | 15, 11, 16 | syl2anc 411 |
. . . . . . 7
|
| 18 | nndceq 6584 |
. . . . . . 7
| |
| 19 | 13, 17, 18 | syl2anc 411 |
. . . . . 6
|
| 20 | exmiddc 837 |
. . . . . 6
| |
| 21 | 19, 20 | syl 14 |
. . . . 5
|
| 22 | f1of1 5520 |
. . . . . . . 8
| |
| 23 | 22 | adantl 277 |
. . . . . . 7
|
| 24 | f1veqaeq 5837 |
. . . . . . 7
| |
| 25 | 23, 9, 14, 24 | syl12anc 1247 |
. . . . . 6
|
| 26 | fveq2 5575 |
. . . . . . . 8
| |
| 27 | 26 | con3i 633 |
. . . . . . 7
|
| 28 | 27 | a1i 9 |
. . . . . 6
|
| 29 | 25, 28 | orim12d 787 |
. . . . 5
|
| 30 | 21, 29 | mpd 13 |
. . . 4
|
| 31 | df-dc 836 |
. . . 4
| |
| 32 | 30, 31 | sylibr 134 |
. . 3
|
| 33 | 6, 32 | exlimddv 1921 |
. 2
|
| 34 | 3, 33 | rexlimddv 2627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-en 6827 df-fin 6829 |
| This theorem is referenced by: fidifsnen 6966 fidifsnid 6967 pw1fin 7006 unfiexmid 7014 undiffi 7021 fidcenumlemim 7053 |
| Copyright terms: Public domain | W3C validator |