Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fidceq | Unicode version |
Description: Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that is finite would require showing it is equinumerous to or to but to show that you'd need to know or , respectively. (Contributed by Jim Kingdon, 5-Sep-2021.) |
Ref | Expression |
---|---|
fidceq | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6739 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | 3ad2ant1 1013 | . 2 |
4 | bren 6725 | . . . . 5 | |
5 | 4 | biimpi 119 | . . . 4 |
6 | 5 | ad2antll 488 | . . 3 |
7 | f1of 5442 | . . . . . . . . . 10 | |
8 | 7 | adantl 275 | . . . . . . . . 9 |
9 | simpll2 1032 | . . . . . . . . 9 | |
10 | 8, 9 | ffvelrnd 5632 | . . . . . . . 8 |
11 | simplrl 530 | . . . . . . . 8 | |
12 | elnn 4590 | . . . . . . . 8 | |
13 | 10, 11, 12 | syl2anc 409 | . . . . . . 7 |
14 | simpll3 1033 | . . . . . . . . 9 | |
15 | 8, 14 | ffvelrnd 5632 | . . . . . . . 8 |
16 | elnn 4590 | . . . . . . . 8 | |
17 | 15, 11, 16 | syl2anc 409 | . . . . . . 7 |
18 | nndceq 6478 | . . . . . . 7 DECID | |
19 | 13, 17, 18 | syl2anc 409 | . . . . . 6 DECID |
20 | exmiddc 831 | . . . . . 6 DECID | |
21 | 19, 20 | syl 14 | . . . . 5 |
22 | f1of1 5441 | . . . . . . . 8 | |
23 | 22 | adantl 275 | . . . . . . 7 |
24 | f1veqaeq 5748 | . . . . . . 7 | |
25 | 23, 9, 14, 24 | syl12anc 1231 | . . . . . 6 |
26 | fveq2 5496 | . . . . . . . 8 | |
27 | 26 | con3i 627 | . . . . . . 7 |
28 | 27 | a1i 9 | . . . . . 6 |
29 | 25, 28 | orim12d 781 | . . . . 5 |
30 | 21, 29 | mpd 13 | . . . 4 |
31 | df-dc 830 | . . . 4 DECID | |
32 | 30, 31 | sylibr 133 | . . 3 DECID |
33 | 6, 32 | exlimddv 1891 | . 2 DECID |
34 | 3, 33 | rexlimddv 2592 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 w3a 973 wceq 1348 wex 1485 wcel 2141 wrex 2449 class class class wbr 3989 com 4574 wf 5194 wf1 5195 wf1o 5197 cfv 5198 cen 6716 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-en 6719 df-fin 6721 |
This theorem is referenced by: fidifsnen 6848 fidifsnid 6849 pw1fin 6888 unfiexmid 6895 undiffi 6902 fidcenumlemim 6929 |
Copyright terms: Public domain | W3C validator |