ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlol Unicode version

Theorem caucvgprlemlol 7671
Description: Lemma for caucvgpr 7683. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemlol  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Distinct variable groups:    A, j    F, l, r, s    u, F   
j, L, r, s   
j, l, s    ph, j,
r, s    u, j,
r, s
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, s, r, l)    F( j, k, n)    L( u, k, n, l)

Proof of Theorem caucvgprlemlol
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7366 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4680 . . . 4  |-  ( s 
<Q  r  ->  ( s  e.  Q.  /\  r  e.  Q. ) )
32simpld 112 . . 3  |-  ( s 
<Q  r  ->  s  e. 
Q. )
433ad2ant2 1019 . 2  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  Q. )
5 oveq1 5884 . . . . . . . 8  |-  ( l  =  r  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
65breq1d 4015 . . . . . . 7  |-  ( l  =  r  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
76rexbidv 2478 . . . . . 6  |-  ( l  =  r  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
8 caucvgpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
98fveq2i 5520 . . . . . . 7  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
10 nqex 7364 . . . . . . . . 9  |-  Q.  e.  _V
1110rabex 4149 . . . . . . . 8  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
1210rabex 4149 . . . . . . . 8  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
1311, 12op1st 6149 . . . . . . 7  |-  ( 1st `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) }
149, 13eqtri 2198 . . . . . 6  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
157, 14elrab2 2898 . . . . 5  |-  ( r  e.  ( 1st `  L
)  <->  ( r  e. 
Q.  /\  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
1615simprbi 275 . . . 4  |-  ( r  e.  ( 1st `  L
)  ->  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
17163ad2ant3 1020 . . 3  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
18 simpll2 1037 . . . . . . 7  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  j  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  -> 
s  <Q  r )
19 ltanqg 7401 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
2019adantl 277 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  /\  j  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
214ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  j  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  -> 
s  e.  Q. )
222simprd 114 . . . . . . . . . 10  |-  ( s 
<Q  r  ->  r  e. 
Q. )
23223ad2ant2 1019 . . . . . . . . 9  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  r  e.  Q. )
2423ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  j  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  -> 
r  e.  Q. )
25 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  j  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  -> 
j  e.  N. )
26 nnnq 7423 . . . . . . . . 9  |-  ( j  e.  N.  ->  [ <. j ,  1o >. ]  ~Q  e.  Q. )
27 recclnq 7393 . . . . . . . . 9  |-  ( [
<. j ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
2825, 26, 273syl 17 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  j  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  -> 
( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
29 addcomnqg 7382 . . . . . . . . 9  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3029adantl 277 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  /\  j  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
3120, 21, 24, 28, 30caovord2d 6046 . . . . . . 7  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  j  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  -> 
( s  <Q  r  <->  ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) ) )
3218, 31mpbid 147 . . . . . 6  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  j  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  -> 
( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
33 ltsonq 7399 . . . . . . 7  |-  <Q  Or  Q.
3433, 1sotri 5026 . . . . . 6  |-  ( ( ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  /\  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  -> 
( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
3532, 34sylancom 420 . . . . 5  |-  ( ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  j  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  -> 
( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
3635ex 115 . . . 4  |-  ( ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L
) )  /\  j  e.  N. )  ->  (
( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )
3736reximdva 2579 . . 3  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  ( E. j  e.  N.  (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3817, 37mpd 13 . 2  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
39 oveq1 5884 . . . . 5  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
4039breq1d 4015 . . . 4  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
4140rexbidv 2478 . . 3  |-  ( l  =  s  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
4241, 14elrab2 2898 . 2  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
434, 38, 42sylanbrc 417 1  |-  ( (
ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   <.cop 3597   class class class wbr 4005   -->wf 5214   ` cfv 5218  (class class class)co 5877   1stc1st 6141   1oc1o 6412   [cec 6535   N.cnpi 7273    <N clti 7276    ~Q ceq 7280   Q.cnq 7281    +Q cplq 7283   *Qcrq 7285    <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354
This theorem is referenced by:  caucvgprlemrnd  7674
  Copyright terms: Public domain W3C validator