ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord2 Unicode version

Theorem monoord2 10433
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord2.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord2.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
Assertion
Ref Expression
monoord2  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 monoord2.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
32renegcld 8299 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  -u ( F `
 k )  e.  RR )
4 eqid 2170 . . . . . 6  |-  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)  =  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)
53, 4fmptd 5650 . . . . 5  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) : ( M ... N
) --> RR )
65ffvelrnda 5631 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  e.  RR )
7 monoord2.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
87ralrimiva 2543 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  (
k  +  1 ) )  <_  ( F `  k ) )
9 oveq1 5860 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
109fveq2d 5500 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
11 fveq2 5496 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
1210, 11breq12d 4002 . . . . . . . . 9  |-  ( k  =  n  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
) )
1312cbvralv 2696 . . . . . . . 8  |-  ( A. k  e.  ( M ... ( N  -  1 ) ) ( F `
 ( k  +  1 ) )  <_ 
( F `  k
)  <->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
148, 13sylib 121 . . . . . . 7  |-  ( ph  ->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
1514r19.21bi 2558 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
)
16 fveq2 5496 . . . . . . . . 9  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
1716eleq1d 2239 . . . . . . . 8  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
182ralrimiva 2543 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
1918adantr 274 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
20 fzp1elp1 10031 . . . . . . . . . 10  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  (
n  +  1 )  e.  ( M ... ( ( N  - 
1 )  +  1 ) ) )
2120adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... (
( N  -  1 )  +  1 ) ) )
22 eluzelz 9496 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
231, 22syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
2423zcnd 9335 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  CC )
25 ax-1cn 7867 . . . . . . . . . . . 12  |-  1  e.  CC
26 npcan 8128 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
2724, 25, 26sylancl 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
2827oveq2d 5869 . . . . . . . . . 10  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
2928adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( M ... ( ( N  - 
1 )  +  1 ) )  =  ( M ... N ) )
3021, 29eleqtrd 2249 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
3117, 19, 30rspcdva 2839 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
3211eleq1d 2239 . . . . . . . 8  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
33 fzssp1 10023 . . . . . . . . . 10  |-  ( M ... ( N  - 
1 ) )  C_  ( M ... ( ( N  -  1 )  +  1 ) )
3433, 28sseqtrid 3197 . . . . . . . . 9  |-  ( ph  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
3534sselda 3147 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( M ... N ) )
3632, 19, 35rspcdva 2839 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  e.  RR )
3731, 36lenegd 8443 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( ( F `  ( n  +  1 ) )  <_  ( F `  n )  <->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) ) )
3815, 37mpbid 146 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) )
3936renegcld 8299 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 n )  e.  RR )
4011negeqd 8114 . . . . . . 7  |-  ( k  =  n  ->  -u ( F `  k )  =  -u ( F `  n ) )
4140, 4fvmptg 5572 . . . . . 6  |-  ( ( n  e.  ( M ... N )  /\  -u ( F `  n
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  n )  =  -u ( F `  n ) )
4235, 39, 41syl2anc 409 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  =  -u ( F `  n ) )
4331renegcld 8299 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 ( n  + 
1 ) )  e.  RR )
4416negeqd 8114 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  -u ( F `  k )  =  -u ( F `  ( n  +  1
) ) )
4544, 4fvmptg 5572 . . . . . 6  |-  ( ( ( n  +  1 )  e.  ( M ... N )  /\  -u ( F `  (
n  +  1 ) )  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  ( n  +  1 ) )  =  -u ( F `  ( n  +  1
) ) )
4630, 43, 45syl2anc 409 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  ( n  +  1 ) )  =  -u ( F `  ( n  +  1
) ) )
4738, 42, 463brtr4d 4021 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  <_  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  ( n  +  1 ) ) )
481, 6, 47monoord 10432 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  <_  (
( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) `  N ) )
49 eluzfz1 9987 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
501, 49syl 14 . . . 4  |-  ( ph  ->  M  e.  ( M ... N ) )
51 fveq2 5496 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
5251eleq1d 2239 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
5352, 18, 50rspcdva 2839 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR )
5453renegcld 8299 . . . 4  |-  ( ph  -> 
-u ( F `  M )  e.  RR )
5551negeqd 8114 . . . . 5  |-  ( k  =  M  ->  -u ( F `  k )  =  -u ( F `  M ) )
5655, 4fvmptg 5572 . . . 4  |-  ( ( M  e.  ( M ... N )  /\  -u ( F `  M
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  M )  =  -u ( F `  M ) )
5750, 54, 56syl2anc 409 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  =  -u ( F `  M ) )
58 eluzfz2 9988 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
591, 58syl 14 . . . 4  |-  ( ph  ->  N  e.  ( M ... N ) )
60 fveq2 5496 . . . . . . 7  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
6160eleq1d 2239 . . . . . 6  |-  ( k  =  N  ->  (
( F `  k
)  e.  RR  <->  ( F `  N )  e.  RR ) )
6261, 18, 59rspcdva 2839 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR )
6362renegcld 8299 . . . 4  |-  ( ph  -> 
-u ( F `  N )  e.  RR )
6460negeqd 8114 . . . . 5  |-  ( k  =  N  ->  -u ( F `  k )  =  -u ( F `  N ) )
6564, 4fvmptg 5572 . . . 4  |-  ( ( N  e.  ( M ... N )  /\  -u ( F `  N
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  N )  =  -u ( F `  N ) )
6659, 63, 65syl2anc 409 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  N )  =  -u ( F `  N ) )
6748, 57, 663brtr3d 4020 . 2  |-  ( ph  -> 
-u ( F `  M )  <_  -u ( F `  N )
)
6862, 53lenegd 8443 . 2  |-  ( ph  ->  ( ( F `  N )  <_  ( F `  M )  <->  -u ( F `  M
)  <_  -u ( F `
 N ) ) )
6967, 68mpbird 166 1  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   1c1 7775    + caddc 7777    <_ cle 7955    - cmin 8090   -ucneg 8091   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator