| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > monoord2 | Unicode version | ||
| Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.) |
| Ref | Expression |
|---|---|
| monoord2.1 |
|
| monoord2.2 |
|
| monoord2.3 |
|
| Ref | Expression |
|---|---|
| monoord2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoord2.1 |
. . . 4
| |
| 2 | monoord2.2 |
. . . . . . 7
| |
| 3 | 2 | renegcld 8452 |
. . . . . 6
|
| 4 | eqid 2205 |
. . . . . 6
| |
| 5 | 3, 4 | fmptd 5734 |
. . . . 5
|
| 6 | 5 | ffvelcdmda 5715 |
. . . 4
|
| 7 | monoord2.3 |
. . . . . . . . 9
| |
| 8 | 7 | ralrimiva 2579 |
. . . . . . . 8
|
| 9 | oveq1 5951 |
. . . . . . . . . . 11
| |
| 10 | 9 | fveq2d 5580 |
. . . . . . . . . 10
|
| 11 | fveq2 5576 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | breq12d 4057 |
. . . . . . . . 9
|
| 13 | 12 | cbvralv 2738 |
. . . . . . . 8
|
| 14 | 8, 13 | sylib 122 |
. . . . . . 7
|
| 15 | 14 | r19.21bi 2594 |
. . . . . 6
|
| 16 | fveq2 5576 |
. . . . . . . . 9
| |
| 17 | 16 | eleq1d 2274 |
. . . . . . . 8
|
| 18 | 2 | ralrimiva 2579 |
. . . . . . . . 9
|
| 19 | 18 | adantr 276 |
. . . . . . . 8
|
| 20 | fzp1elp1 10197 |
. . . . . . . . . 10
| |
| 21 | 20 | adantl 277 |
. . . . . . . . 9
|
| 22 | eluzelz 9657 |
. . . . . . . . . . . . . 14
| |
| 23 | 1, 22 | syl 14 |
. . . . . . . . . . . . 13
|
| 24 | 23 | zcnd 9496 |
. . . . . . . . . . . 12
|
| 25 | ax-1cn 8018 |
. . . . . . . . . . . 12
| |
| 26 | npcan 8281 |
. . . . . . . . . . . 12
| |
| 27 | 24, 25, 26 | sylancl 413 |
. . . . . . . . . . 11
|
| 28 | 27 | oveq2d 5960 |
. . . . . . . . . 10
|
| 29 | 28 | adantr 276 |
. . . . . . . . 9
|
| 30 | 21, 29 | eleqtrd 2284 |
. . . . . . . 8
|
| 31 | 17, 19, 30 | rspcdva 2882 |
. . . . . . 7
|
| 32 | 11 | eleq1d 2274 |
. . . . . . . 8
|
| 33 | fzssp1 10189 |
. . . . . . . . . 10
| |
| 34 | 33, 28 | sseqtrid 3243 |
. . . . . . . . 9
|
| 35 | 34 | sselda 3193 |
. . . . . . . 8
|
| 36 | 32, 19, 35 | rspcdva 2882 |
. . . . . . 7
|
| 37 | 31, 36 | lenegd 8597 |
. . . . . 6
|
| 38 | 15, 37 | mpbid 147 |
. . . . 5
|
| 39 | 36 | renegcld 8452 |
. . . . . 6
|
| 40 | 11 | negeqd 8267 |
. . . . . . 7
|
| 41 | 40, 4 | fvmptg 5655 |
. . . . . 6
|
| 42 | 35, 39, 41 | syl2anc 411 |
. . . . 5
|
| 43 | 31 | renegcld 8452 |
. . . . . 6
|
| 44 | 16 | negeqd 8267 |
. . . . . . 7
|
| 45 | 44, 4 | fvmptg 5655 |
. . . . . 6
|
| 46 | 30, 43, 45 | syl2anc 411 |
. . . . 5
|
| 47 | 38, 42, 46 | 3brtr4d 4076 |
. . . 4
|
| 48 | 1, 6, 47 | monoord 10630 |
. . 3
|
| 49 | eluzfz1 10153 |
. . . . 5
| |
| 50 | 1, 49 | syl 14 |
. . . 4
|
| 51 | fveq2 5576 |
. . . . . . 7
| |
| 52 | 51 | eleq1d 2274 |
. . . . . 6
|
| 53 | 52, 18, 50 | rspcdva 2882 |
. . . . 5
|
| 54 | 53 | renegcld 8452 |
. . . 4
|
| 55 | 51 | negeqd 8267 |
. . . . 5
|
| 56 | 55, 4 | fvmptg 5655 |
. . . 4
|
| 57 | 50, 54, 56 | syl2anc 411 |
. . 3
|
| 58 | eluzfz2 10154 |
. . . . 5
| |
| 59 | 1, 58 | syl 14 |
. . . 4
|
| 60 | fveq2 5576 |
. . . . . . 7
| |
| 61 | 60 | eleq1d 2274 |
. . . . . 6
|
| 62 | 61, 18, 59 | rspcdva 2882 |
. . . . 5
|
| 63 | 62 | renegcld 8452 |
. . . 4
|
| 64 | 60 | negeqd 8267 |
. . . . 5
|
| 65 | 64, 4 | fvmptg 5655 |
. . . 4
|
| 66 | 59, 63, 65 | syl2anc 411 |
. . 3
|
| 67 | 48, 57, 66 | 3brtr3d 4075 |
. 2
|
| 68 | 62, 53 | lenegd 8597 |
. 2
|
| 69 | 67, 68 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |