ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord2 Unicode version

Theorem monoord2 10708
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord2.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord2.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
Assertion
Ref Expression
monoord2  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 monoord2.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
32renegcld 8526 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  -u ( F `
 k )  e.  RR )
4 eqid 2229 . . . . . 6  |-  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)  =  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)
53, 4fmptd 5789 . . . . 5  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) : ( M ... N
) --> RR )
65ffvelcdmda 5770 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  e.  RR )
7 monoord2.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
87ralrimiva 2603 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  (
k  +  1 ) )  <_  ( F `  k ) )
9 oveq1 6008 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
109fveq2d 5631 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
11 fveq2 5627 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
1210, 11breq12d 4096 . . . . . . . . 9  |-  ( k  =  n  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
) )
1312cbvralv 2765 . . . . . . . 8  |-  ( A. k  e.  ( M ... ( N  -  1 ) ) ( F `
 ( k  +  1 ) )  <_ 
( F `  k
)  <->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
148, 13sylib 122 . . . . . . 7  |-  ( ph  ->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
1514r19.21bi 2618 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
)
16 fveq2 5627 . . . . . . . . 9  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
1716eleq1d 2298 . . . . . . . 8  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
182ralrimiva 2603 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
1918adantr 276 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
20 fzp1elp1 10271 . . . . . . . . . 10  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  (
n  +  1 )  e.  ( M ... ( ( N  - 
1 )  +  1 ) ) )
2120adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... (
( N  -  1 )  +  1 ) ) )
22 eluzelz 9731 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
231, 22syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
2423zcnd 9570 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  CC )
25 ax-1cn 8092 . . . . . . . . . . . 12  |-  1  e.  CC
26 npcan 8355 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
2724, 25, 26sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
2827oveq2d 6017 . . . . . . . . . 10  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
2928adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( M ... ( ( N  - 
1 )  +  1 ) )  =  ( M ... N ) )
3021, 29eleqtrd 2308 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
3117, 19, 30rspcdva 2912 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
3211eleq1d 2298 . . . . . . . 8  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
33 fzssp1 10263 . . . . . . . . . 10  |-  ( M ... ( N  - 
1 ) )  C_  ( M ... ( ( N  -  1 )  +  1 ) )
3433, 28sseqtrid 3274 . . . . . . . . 9  |-  ( ph  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
3534sselda 3224 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( M ... N ) )
3632, 19, 35rspcdva 2912 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  e.  RR )
3731, 36lenegd 8671 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( ( F `  ( n  +  1 ) )  <_  ( F `  n )  <->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) ) )
3815, 37mpbid 147 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) )
3936renegcld 8526 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 n )  e.  RR )
4011negeqd 8341 . . . . . . 7  |-  ( k  =  n  ->  -u ( F `  k )  =  -u ( F `  n ) )
4140, 4fvmptg 5710 . . . . . 6  |-  ( ( n  e.  ( M ... N )  /\  -u ( F `  n
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  n )  =  -u ( F `  n ) )
4235, 39, 41syl2anc 411 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  =  -u ( F `  n ) )
4331renegcld 8526 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 ( n  + 
1 ) )  e.  RR )
4416negeqd 8341 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  -u ( F `  k )  =  -u ( F `  ( n  +  1
) ) )
4544, 4fvmptg 5710 . . . . . 6  |-  ( ( ( n  +  1 )  e.  ( M ... N )  /\  -u ( F `  (
n  +  1 ) )  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  ( n  +  1 ) )  =  -u ( F `  ( n  +  1
) ) )
4630, 43, 45syl2anc 411 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  ( n  +  1 ) )  =  -u ( F `  ( n  +  1
) ) )
4738, 42, 463brtr4d 4115 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  <_  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  ( n  +  1 ) ) )
481, 6, 47monoord 10707 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  <_  (
( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) `  N ) )
49 eluzfz1 10227 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
501, 49syl 14 . . . 4  |-  ( ph  ->  M  e.  ( M ... N ) )
51 fveq2 5627 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
5251eleq1d 2298 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
5352, 18, 50rspcdva 2912 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR )
5453renegcld 8526 . . . 4  |-  ( ph  -> 
-u ( F `  M )  e.  RR )
5551negeqd 8341 . . . . 5  |-  ( k  =  M  ->  -u ( F `  k )  =  -u ( F `  M ) )
5655, 4fvmptg 5710 . . . 4  |-  ( ( M  e.  ( M ... N )  /\  -u ( F `  M
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  M )  =  -u ( F `  M ) )
5750, 54, 56syl2anc 411 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  =  -u ( F `  M ) )
58 eluzfz2 10228 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
591, 58syl 14 . . . 4  |-  ( ph  ->  N  e.  ( M ... N ) )
60 fveq2 5627 . . . . . . 7  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
6160eleq1d 2298 . . . . . 6  |-  ( k  =  N  ->  (
( F `  k
)  e.  RR  <->  ( F `  N )  e.  RR ) )
6261, 18, 59rspcdva 2912 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR )
6362renegcld 8526 . . . 4  |-  ( ph  -> 
-u ( F `  N )  e.  RR )
6460negeqd 8341 . . . . 5  |-  ( k  =  N  ->  -u ( F `  k )  =  -u ( F `  N ) )
6564, 4fvmptg 5710 . . . 4  |-  ( ( N  e.  ( M ... N )  /\  -u ( F `  N
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  N )  =  -u ( F `  N ) )
6659, 63, 65syl2anc 411 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  N )  =  -u ( F `  N ) )
6748, 57, 663brtr3d 4114 . 2  |-  ( ph  -> 
-u ( F `  M )  <_  -u ( F `  N )
)
6862, 53lenegd 8671 . 2  |-  ( ph  ->  ( ( F `  N )  <_  ( F `  M )  <->  -u ( F `  M
)  <_  -u ( F `
 N ) ) )
6967, 68mpbird 167 1  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   1c1 8000    + caddc 8002    <_ cle 8182    - cmin 8317   -ucneg 8318   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator