ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrest Unicode version

Theorem ssrest 12194
Description: If  K is a finer topology than  J, then the subspace topologies induced by  A maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
ssrest  |-  ( ( K  e.  V  /\  J  C_  K )  -> 
( Jt  A )  C_  ( Kt  A ) )

Proof of Theorem ssrest
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  ->  x  e.  ( Jt  A
) )
2 ssrexv 3128 . . . . . 6  |-  ( J 
C_  K  ->  ( E. y  e.  J  x  =  ( y  i^i  A )  ->  E. y  e.  K  x  =  ( y  i^i  A
) ) )
32ad2antlr 478 . . . . 5  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( E. y  e.  J  x  =  ( y  i^i  A )  ->  E. y  e.  K  x  =  ( y  i^i  A ) ) )
4 df-rest 11965 . . . . . . . 8  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
54elmpocl 5922 . . . . . . 7  |-  ( x  e.  ( Jt  A )  ->  ( J  e. 
_V  /\  A  e.  _V ) )
65adantl 273 . . . . . 6  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( J  e.  _V  /\  A  e.  _V )
)
7 elrest 11970 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
86, 7syl 14 . . . . 5  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
9 simpll 501 . . . . . 6  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  ->  K  e.  V )
106simprd 113 . . . . . 6  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  ->  A  e.  _V )
11 elrest 11970 . . . . . 6  |-  ( ( K  e.  V  /\  A  e.  _V )  ->  ( x  e.  ( Kt  A )  <->  E. y  e.  K  x  =  ( y  i^i  A
) ) )
129, 10, 11syl2anc 406 . . . . 5  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( x  e.  ( Kt  A )  <->  E. y  e.  K  x  =  ( y  i^i  A
) ) )
133, 8, 123imtr4d 202 . . . 4  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  -> 
( x  e.  ( Jt  A )  ->  x  e.  ( Kt  A ) ) )
141, 13mpd 13 . . 3  |-  ( ( ( K  e.  V  /\  J  C_  K )  /\  x  e.  ( Jt  A ) )  ->  x  e.  ( Kt  A
) )
1514ex 114 . 2  |-  ( ( K  e.  V  /\  J  C_  K )  -> 
( x  e.  ( Jt  A )  ->  x  e.  ( Kt  A ) ) )
1615ssrdv 3069 1  |-  ( ( K  e.  V  /\  J  C_  K )  -> 
( Jt  A )  C_  ( Kt  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   E.wrex 2391   _Vcvv 2657    i^i cin 3036    C_ wss 3037    |-> cmpt 3949   ran crn 4500  (class class class)co 5728   ↾t crest 11963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-rest 11965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator