ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pclemub Unicode version

Theorem pclemub 12241
Description: Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
Hypothesis
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
Assertion
Ref Expression
pclemub  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
Distinct variable groups:    n, N, y   
x, N, y    P, n, y    x, P
Allowed substitution hints:    A( x, y, n)

Proof of Theorem pclemub
StepHypRef Expression
1 nnssz 9229 . 2  |-  NN  C_  ZZ
2 zcn 9217 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
32abscld 11145 . . . . 5  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
43ad2antrl 487 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( abs `  N
)  e.  RR )
5 eluzelre 9497 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
65adantr 274 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  RR )
7 eluz2gt1 9561 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
87adantr 274 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
1  <  P )
9 expnbnd 10599 . . . 4  |-  ( ( ( abs `  N
)  e.  RR  /\  P  e.  RR  /\  1  <  P )  ->  E. x  e.  NN  ( abs `  N
)  <  ( P ^ x ) )
104, 6, 8, 9syl3anc 1233 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  NN  ( abs `  N )  <  ( P ^
x ) )
11 simprr 527 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  A )
12 oveq2 5861 . . . . . . . . . . . . . 14  |-  ( n  =  y  ->  ( P ^ n )  =  ( P ^ y
) )
1312breq1d 3999 . . . . . . . . . . . . 13  |-  ( n  =  y  ->  (
( P ^ n
)  ||  N  <->  ( P ^ y )  ||  N ) )
14 pclem.1 . . . . . . . . . . . . 13  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
1513, 14elrab2 2889 . . . . . . . . . . . 12  |-  ( y  e.  A  <->  ( y  e.  NN0  /\  ( P ^ y )  ||  N ) )
1611, 15sylib 121 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y  e.  NN0  /\  ( P ^ y
)  ||  N )
)
1716simprd 113 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  ||  N )
18 eluz2nn 9525 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
1918ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  P  e.  NN )
2016simpld 111 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  NN0 )
2119, 20nnexpcld 10631 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  e.  NN )
2221nnzd 9333 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  e.  ZZ )
23 simplrl 530 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  N  e.  ZZ )
24 simplrr 531 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  N  =/=  0 )
25 dvdsleabs 11805 . . . . . . . . . . 11  |-  ( ( ( P ^ y
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( P ^ y
)  ||  N  ->  ( P ^ y )  <_  ( abs `  N
) ) )
2622, 23, 24, 25syl3anc 1233 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( P ^
y )  ||  N  ->  ( P ^ y
)  <_  ( abs `  N ) ) )
2717, 26mpd 13 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  <_  ( abs `  N ) )
2821nnred 8891 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  e.  RR )
294adantr 274 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( abs `  N
)  e.  RR )
305ad2antrr 485 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  P  e.  RR )
31 nnnn0 9142 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  e.  NN0 )
3231ad2antrl 487 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  NN0 )
3330, 32reexpcld 10626 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ x
)  e.  RR )
34 lelttr 8008 . . . . . . . . . 10  |-  ( ( ( P ^ y
)  e.  RR  /\  ( abs `  N )  e.  RR  /\  ( P ^ x )  e.  RR )  ->  (
( ( P ^
y )  <_  ( abs `  N )  /\  ( abs `  N )  <  ( P ^
x ) )  -> 
( P ^ y
)  <  ( P ^ x ) ) )
3528, 29, 33, 34syl3anc 1233 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( ( P ^ y )  <_ 
( abs `  N
)  /\  ( abs `  N )  <  ( P ^ x ) )  ->  ( P ^
y )  <  ( P ^ x ) ) )
3627, 35mpand 427 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( abs `  N
)  <  ( P ^ x )  -> 
( P ^ y
)  <  ( P ^ x ) ) )
377ad2antrr 485 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
1  <  P )
38 nn0ltexp2 10644 . . . . . . . . 9  |-  ( ( ( P  e.  RR  /\  y  e.  NN0  /\  x  e.  NN0 )  /\  1  <  P )  -> 
( y  <  x  <->  ( P ^ y )  <  ( P ^
x ) ) )
3930, 20, 32, 37, 38syl31anc 1236 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y  <  x  <->  ( P ^ y )  <  ( P ^
x ) ) )
4036, 39sylibrd 168 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( abs `  N
)  <  ( P ^ x )  -> 
y  <  x )
)
4120nn0red 9189 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  RR )
42 nnre 8885 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  RR )
4342ad2antrl 487 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  RR )
44 ltle 8007 . . . . . . . 8  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <  x  ->  y  <_  x )
)
4541, 43, 44syl2anc 409 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y  <  x  ->  y  <_  x )
)
4640, 45syld 45 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( abs `  N
)  <  ( P ^ x )  -> 
y  <_  x )
)
4746anassrs 398 . . . . 5  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  NN )  /\  y  e.  A )  ->  (
( abs `  N
)  <  ( P ^ x )  -> 
y  <_  x )
)
4847ralrimdva 2550 . . . 4  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  NN )  ->  (
( abs `  N
)  <  ( P ^ x )  ->  A. y  e.  A  y  <_  x ) )
4948reximdva 2572 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( E. x  e.  NN  ( abs `  N
)  <  ( P ^ x )  ->  E. x  e.  NN  A. y  e.  A  y  <_  x ) )
5010, 49mpd 13 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  NN  A. y  e.  A  y  <_  x )
51 ssrexv 3212 . 2  |-  ( NN  C_  ZZ  ->  ( E. x  e.  NN  A. y  e.  A  y  <_  x  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x ) )
521, 50, 51mpsyl 65 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449   {crab 2452    C_ wss 3121   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775    < clt 7954    <_ cle 7955   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ^cexp 10475   abscabs 10961    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750
This theorem is referenced by:  pcprecl  12243  pcprendvds  12244  pcpremul  12247
  Copyright terms: Public domain W3C validator