ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sub4 Unicode version

Theorem sub4 7790
Description: Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.)
Assertion
Ref Expression
sub4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  -  ( C  -  D )
)  =  ( ( A  -  C )  -  ( B  -  D ) ) )

Proof of Theorem sub4
StepHypRef Expression
1 addcom 7682 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C
)  =  ( C  +  B ) )
21ad2ant2lr 495 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  +  C
)  =  ( C  +  B ) )
32oveq2d 5684 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  D )  -  ( B  +  C )
)  =  ( ( A  +  D )  -  ( C  +  B ) ) )
4 subadd4 7789 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  -  ( C  -  D )
)  =  ( ( A  +  D )  -  ( B  +  C ) ) )
5 subadd4 7789 . . 3  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  C )  -  ( B  -  D )
)  =  ( ( A  +  D )  -  ( C  +  B ) ) )
65an4s 556 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  C )  -  ( B  -  D )
)  =  ( ( A  +  D )  -  ( C  +  B ) ) )
73, 4, 63eqtr4d 2131 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  -  ( C  -  D )
)  =  ( ( A  -  C )  -  ( B  -  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439  (class class class)co 5668   CCcc 7411    + caddc 7416    - cmin 7716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-setind 4368  ax-resscn 7500  ax-1cn 7501  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-iota 4995  df-fun 5032  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-sub 7718
This theorem is referenced by:  sub4d  7905
  Copyright terms: Public domain W3C validator