ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvsub Unicode version

Theorem grpinvsub 13489
Description: Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014.)
Hypotheses
Ref Expression
grpsubcl.b  |-  B  =  ( Base `  G
)
grpsubcl.m  |-  .-  =  ( -g `  G )
grpinvsub.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvsub  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )

Proof of Theorem grpinvsub
StepHypRef Expression
1 grpsubcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 grpinvsub.n . . . . . 6  |-  N  =  ( invg `  G )
31, 2grpinvcl 13455 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
433adant2 1019 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
5 eqid 2206 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
61, 5, 2grpinvadd 13485 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( N `  Y )  e.  B )  -> 
( N `  ( X ( +g  `  G
) ( N `  Y ) ) )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
74, 6syld3an3 1295 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
81, 2grpinvinv 13474 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
983adant2 1019 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
109oveq1d 5972 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  ( N `  Y ) ) ( +g  `  G
) ( N `  X ) )  =  ( Y ( +g  `  G ) ( N `
 X ) ) )
117, 10eqtrd 2239 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) )  =  ( Y ( +g  `  G ) ( N `  X
) ) )
12 grpsubcl.m . . . . 5  |-  .-  =  ( -g `  G )
131, 5, 2, 12grpsubval 13453 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( N `  Y ) ) )
14133adant1 1018 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( N `  Y ) ) )
1514fveq2d 5593 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .-  Y ) )  =  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) ) )
161, 5, 2, 12grpsubval 13453 . . . 4  |-  ( ( Y  e.  B  /\  X  e.  B )  ->  ( Y  .-  X
)  =  ( Y ( +g  `  G
) ( N `  X ) ) )
1716ancoms 268 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( Y  .-  X
)  =  ( Y ( +g  `  G
) ( N `  X ) ) )
18173adant1 1018 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .-  X
)  =  ( Y ( +g  `  G
) ( N `  X ) ) )
1911, 15, 183eqtr4d 2249 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2177   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   Grpcgrp 13407   invgcminusg 13408   -gcsg 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-sbg 13412
This theorem is referenced by:  grpsubsub  13496  ablsub2inv  13722  aprsym  14121  lspsnsub  14258
  Copyright terms: Public domain W3C validator