ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq1lem Unicode version

Theorem sincosq1lem 15330
Description: Lemma for sincosq1sgn 15331. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq1lem  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  ( pi  /  2
) )  ->  0  <  ( sin `  A
) )

Proof of Theorem sincosq1lem
StepHypRef Expression
1 halfpire 15297 . . . . . 6  |-  ( pi 
/  2 )  e.  RR
2 ltle 8162 . . . . . 6  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  < 
( pi  /  2
)  ->  A  <_  ( pi  /  2 ) ) )
31, 2mpan2 425 . . . . 5  |-  ( A  e.  RR  ->  ( A  <  ( pi  / 
2 )  ->  A  <_  ( pi  /  2
) ) )
4 pire 15291 . . . . . . . 8  |-  pi  e.  RR
5 4re 9115 . . . . . . . 8  |-  4  e.  RR
6 pigt2lt4 15289 . . . . . . . . 9  |-  ( 2  <  pi  /\  pi  <  4 )
76simpri 113 . . . . . . . 8  |-  pi  <  4
84, 5, 7ltleii 8177 . . . . . . 7  |-  pi  <_  4
9 2re 9108 . . . . . . . . 9  |-  2  e.  RR
10 2pos 9129 . . . . . . . . . 10  |-  0  <  2
119, 10pm3.2i 272 . . . . . . . . 9  |-  ( 2  e.  RR  /\  0  <  2 )
12 ledivmul 8952 . . . . . . . . 9  |-  ( ( pi  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
/  2 )  <_ 
2  <->  pi  <_  ( 2  x.  2 ) ) )
134, 9, 11, 12mp3an 1350 . . . . . . . 8  |-  ( ( pi  /  2 )  <_  2  <->  pi  <_  ( 2  x.  2 ) )
14 2t2e4 9193 . . . . . . . . 9  |-  ( 2  x.  2 )  =  4
1514breq2i 4053 . . . . . . . 8  |-  ( pi 
<_  ( 2  x.  2 )  <->  pi  <_  4 )
1613, 15bitri 184 . . . . . . 7  |-  ( ( pi  /  2 )  <_  2  <->  pi  <_  4 )
178, 16mpbir 146 . . . . . 6  |-  ( pi 
/  2 )  <_ 
2
18 letr 8157 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  2  e.  RR )  ->  ( ( A  <_ 
( pi  /  2
)  /\  ( pi  /  2 )  <_  2
)  ->  A  <_  2 ) )
191, 9, 18mp3an23 1342 . . . . . 6  |-  ( A  e.  RR  ->  (
( A  <_  (
pi  /  2 )  /\  ( pi  / 
2 )  <_  2
)  ->  A  <_  2 ) )
2017, 19mpan2i 431 . . . . 5  |-  ( A  e.  RR  ->  ( A  <_  ( pi  / 
2 )  ->  A  <_  2 ) )
213, 20syld 45 . . . 4  |-  ( A  e.  RR  ->  ( A  <  ( pi  / 
2 )  ->  A  <_  2 ) )
2221adantr 276 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  <  (
pi  /  2 )  ->  A  <_  2
) )
23223impia 1203 . 2  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  ( pi  /  2
) )  ->  A  <_  2 )
24 0xr 8121 . . . 4  |-  0  e.  RR*
25 elioc2 10060 . . . 4  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  ( A  e.  ( 0 (,] 2 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  2 ) ) )
2624, 9, 25mp2an 426 . . 3  |-  ( A  e.  ( 0 (,] 2 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  2 ) )
27 sin02gt0 12108 . . 3  |-  ( A  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  A
) )
2826, 27sylbir 135 . 2  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  2 )  ->  0  <  ( sin `  A
) )
2923, 28syld3an3 1295 1  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  ( pi  /  2
) )  ->  0  <  ( sin `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2176   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   RRcr 7926   0cc0 7927    x. cmul 7932   RR*cxr 8108    < clt 8109    <_ cle 8110    / cdiv 8747   2c2 9089   4c4 9091   (,]cioc 10013   sincsin 11988   picpi 11991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047  ax-pre-suploc 8048  ax-addf 8049  ax-mulf 8050
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-of 6160  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-map 6739  df-pm 6740  df-en 6830  df-dom 6831  df-fin 6832  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-9 9104  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-ioo 10016  df-ioc 10017  df-ico 10018  df-icc 10019  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-bc 10895  df-ihash 10923  df-shft 11159  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698  df-ef 11992  df-sin 11994  df-cos 11995  df-pi 11997  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-ntr 14601  df-cn 14693  df-cnp 14694  df-tx 14758  df-cncf 15076  df-limced 15161  df-dvap 15162
This theorem is referenced by:  sincosq1sgn  15331  sinq12gt0  15335
  Copyright terms: Public domain W3C validator