ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubf Unicode version

Theorem grpsubf 13496
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
grpsubcl.b  |-  B  =  ( Base `  G
)
grpsubcl.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubf  |-  ( G  e.  Grp  ->  .-  :
( B  X.  B
) --> B )

Proof of Theorem grpsubf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubcl.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2 eqid 2206 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
31, 2grpinvcl 13465 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( invg `  G ) `  y
)  e.  B )
433adant2 1019 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( invg `  G ) `  y
)  e.  B )
5 eqid 2206 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
61, 5grpcl 13425 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  ( ( invg `  G ) `  y
)  e.  B )  ->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) )  e.  B
)
74, 6syld3an3 1295 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) ( ( invg `  G
) `  y )
)  e.  B )
873expb 1207 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) ( ( invg `  G ) `
 y ) )  e.  B )
98ralrimivva 2589 . . 3  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) ( ( invg `  G ) `  y
) )  e.  B
)
10 eqid 2206 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G
) ( ( invg `  G ) `
 y ) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G
) ( ( invg `  G ) `
 y ) ) )
1110fmpo 6305 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  G
) ( ( invg `  G ) `
 y ) )  e.  B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) ) ) : ( B  X.  B
) --> B )
129, 11sylib 122 . 2  |-  ( G  e.  Grp  ->  (
x  e.  B , 
y  e.  B  |->  ( x ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ) : ( B  X.  B ) --> B )
13 grpsubcl.m . . . 4  |-  .-  =  ( -g `  G )
141, 5, 2, 13grpsubfvalg 13462 . . 3  |-  ( G  e.  Grp  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) ( ( invg `  G
) `  y )
) ) )
1514feq1d 5427 . 2  |-  ( G  e.  Grp  ->  (  .-  : ( B  X.  B ) --> B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) ) ) : ( B  X.  B
) --> B ) )
1612, 15mpbird 167 1  |-  ( G  e.  Grp  ->  .-  :
( B  X.  B
) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   A.wral 2485    X. cxp 4686   -->wf 5281   ` cfv 5285  (class class class)co 5962    e. cmpo 5964   Basecbs 12917   +g cplusg 12994   Grpcgrp 13417   invgcminusg 13418   -gcsg 13419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-inn 9067  df-2 9125  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421  df-sbg 13422
This theorem is referenced by:  grpsubcl  13497  cnfldsub  14422
  Copyright terms: Public domain W3C validator