ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubf Unicode version

Theorem grpsubf 13281
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
grpsubcl.b  |-  B  =  ( Base `  G
)
grpsubcl.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubf  |-  ( G  e.  Grp  ->  .-  :
( B  X.  B
) --> B )

Proof of Theorem grpsubf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubcl.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2 eqid 2196 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
31, 2grpinvcl 13250 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( invg `  G ) `  y
)  e.  B )
433adant2 1018 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( invg `  G ) `  y
)  e.  B )
5 eqid 2196 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
61, 5grpcl 13210 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  ( ( invg `  G ) `  y
)  e.  B )  ->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) )  e.  B
)
74, 6syld3an3 1294 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) ( ( invg `  G
) `  y )
)  e.  B )
873expb 1206 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) ( ( invg `  G ) `
 y ) )  e.  B )
98ralrimivva 2579 . . 3  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) ( ( invg `  G ) `  y
) )  e.  B
)
10 eqid 2196 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G
) ( ( invg `  G ) `
 y ) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G
) ( ( invg `  G ) `
 y ) ) )
1110fmpo 6268 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  G
) ( ( invg `  G ) `
 y ) )  e.  B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) ) ) : ( B  X.  B
) --> B )
129, 11sylib 122 . 2  |-  ( G  e.  Grp  ->  (
x  e.  B , 
y  e.  B  |->  ( x ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ) : ( B  X.  B ) --> B )
13 grpsubcl.m . . . 4  |-  .-  =  ( -g `  G )
141, 5, 2, 13grpsubfvalg 13247 . . 3  |-  ( G  e.  Grp  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) ( ( invg `  G
) `  y )
) ) )
1514feq1d 5397 . 2  |-  ( G  e.  Grp  ->  (  .-  : ( B  X.  B ) --> B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) ) ) : ( B  X.  B
) --> B ) )
1612, 15mpbird 167 1  |-  ( G  e.  Grp  ->  .-  :
( B  X.  B
) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   A.wral 2475    X. cxp 4662   -->wf 5255   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   Basecbs 12703   +g cplusg 12780   Grpcgrp 13202   invgcminusg 13203   -gcsg 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207
This theorem is referenced by:  grpsubcl  13282  cnfldsub  14207
  Copyright terms: Public domain W3C validator