ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpnpcan Unicode version

Theorem grpnpcan 13539
Description: Cancellation law for subtraction (npcan 8316 analog). (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpnpcan  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  .+  Y
)  =  X )

Proof of Theorem grpnpcan
StepHypRef Expression
1 grpsubadd.b . . . . . 6  |-  B  =  ( Base `  G
)
2 eqid 2207 . . . . . 6  |-  ( invg `  G )  =  ( invg `  G )
31, 2grpinvcl 13495 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  G ) `  Y
)  e.  B )
433adant2 1019 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( invg `  G ) `  Y
)  e.  B )
5 grpsubadd.p . . . . 5  |-  .+  =  ( +g  `  G )
61, 5grpcl 13455 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( ( invg `  G ) `  Y
)  e.  B )  ->  ( X  .+  ( ( invg `  G ) `  Y
) )  e.  B
)
74, 6syld3an3 1295 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( invg `  G ) `  Y
) )  e.  B
)
8 grpsubadd.m . . . 4  |-  .-  =  ( -g `  G )
91, 5, 2, 8grpsubval 13493 . . 3  |-  ( ( ( X  .+  (
( invg `  G ) `  Y
) )  e.  B  /\  ( ( invg `  G ) `  Y
)  e.  B )  ->  ( ( X 
.+  ( ( invg `  G ) `
 Y ) ) 
.-  ( ( invg `  G ) `
 Y ) )  =  ( ( X 
.+  ( ( invg `  G ) `
 Y ) ) 
.+  ( ( invg `  G ) `
 ( ( invg `  G ) `
 Y ) ) ) )
107, 4, 9syl2anc 411 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( ( invg `  G ) `  Y
) )  .-  (
( invg `  G ) `  Y
) )  =  ( ( X  .+  (
( invg `  G ) `  Y
) )  .+  (
( invg `  G ) `  (
( invg `  G ) `  Y
) ) ) )
111, 5, 8grppncan 13538 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( ( invg `  G ) `  Y
)  e.  B )  ->  ( ( X 
.+  ( ( invg `  G ) `
 Y ) ) 
.-  ( ( invg `  G ) `
 Y ) )  =  X )
124, 11syld3an3 1295 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( ( invg `  G ) `  Y
) )  .-  (
( invg `  G ) `  Y
) )  =  X )
131, 5, 2, 8grpsubval 13493 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( ( invg `  G ) `
 Y ) ) )
14133adant1 1018 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( ( invg `  G ) `
 Y ) ) )
1514eqcomd 2213 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( invg `  G ) `  Y
) )  =  ( X  .-  Y ) )
161, 2grpinvinv 13514 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  G ) `  (
( invg `  G ) `  Y
) )  =  Y )
17163adant2 1019 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( invg `  G ) `  (
( invg `  G ) `  Y
) )  =  Y )
1815, 17oveq12d 5985 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  (
( invg `  G ) `  (
( invg `  G ) `  Y
) ) )  =  ( ( X  .-  Y )  .+  Y
) )
1910, 12, 183eqtr3rd 2249 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  .+  Y
)  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447   invgcminusg 13448   -gcsg 13449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452
This theorem is referenced by:  grpsubsub4  13540  grpnpncan  13542  grpnnncan2  13544  dfgrp3m  13546  nsgconj  13657  conjghm  13727  conjnmz  13730  ablpncan3  13768  lmodvnpcan  14218
  Copyright terms: Public domain W3C validator