ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lediv1 Unicode version

Theorem lediv1 8839
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
lediv1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( A  /  C )  <_  ( B  /  C ) ) )

Proof of Theorem lediv1
StepHypRef Expression
1 ltdiv1 8838 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  <  A  <->  ( B  /  C )  <  ( A  /  C ) ) )
213com12 1208 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  <  A  <->  ( B  /  C )  <  ( A  /  C ) ) )
32notbid 668 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( -.  B  < 
A  <->  -.  ( B  /  C )  <  ( A  /  C ) ) )
4 lenlt 8046 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
543adant3 1018 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
6 gt0ap0 8596 . . . . . . 7  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C #  0 )
763adant1 1016 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  C #  0 )
8 redivclap 8701 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  C #  0 )  ->  ( A  /  C )  e.  RR )
97, 8syld3an3 1293 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  ( A  /  C )  e.  RR )
1093expb 1205 . . . 4  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  /  C )  e.  RR )
11103adant2 1017 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  /  C
)  e.  RR )
1263adant1 1016 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  C #  0 )
13 redivclap 8701 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  C #  0 )  ->  ( B  /  C )  e.  RR )
1412, 13syld3an3 1293 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  ( B  /  C )  e.  RR )
15143expb 1205 . . . 4  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( B  /  C )  e.  RR )
16153adant1 1016 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  /  C
)  e.  RR )
1711, 16lenltd 8088 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <_  ( B  /  C )  <->  -.  ( B  /  C )  < 
( A  /  C
) ) )
183, 5, 173bitr4d 220 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( A  /  C )  <_  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   RRcr 7823   0cc0 7824    < clt 8005    <_ cle 8006   # cap 8551    / cdiv 8642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643
This theorem is referenced by:  ge0div  8841  ledivmul  8847  lediv23  8863  lediv1d  9756  icccntr  10013  sin01bnd  11778  cos01bnd  11779  sin02gt0  11784  hashdvds  12234  cosordlem  14541  lgseisenlem1  14721
  Copyright terms: Public domain W3C validator