ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr2a Unicode version

Theorem tfr2a 6300
Description: A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr2a  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )

Proof of Theorem tfr2a
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . . 4  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
21tfrlem9 6298 . . 3  |-  ( A  e.  dom recs ( G
)  ->  (recs ( G ) `  A
)  =  ( G `
 (recs ( G )  |`  A )
) )
3 tfr.1 . . . 4  |-  F  = recs ( G )
43dmeqi 4812 . . 3  |-  dom  F  =  dom recs ( G )
52, 4eleq2s 2265 . 2  |-  ( A  e.  dom  F  -> 
(recs ( G ) `
 A )  =  ( G `  (recs ( G )  |`  A ) ) )
63fveq1i 5497 . 2  |-  ( F `
 A )  =  (recs ( G ) `
 A )
73reseq1i 4887 . . 3  |-  ( F  |`  A )  =  (recs ( G )  |`  A )
87fveq2i 5499 . 2  |-  ( G `
 ( F  |`  A ) )  =  ( G `  (recs ( G )  |`  A ) )
95, 6, 83eqtr4g 2228 1  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   Oncon0 4348   dom cdm 4611    |` cres 4613    Fn wfn 5193   ` cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-recs 6284
This theorem is referenced by:  tfr0  6302  tfri2d  6315  tfrcl  6343  tfri2  6345  frecsuclem  6385
  Copyright terms: Public domain W3C validator