ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr2a Unicode version

Theorem tfr2a 6406
Description: A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr2a  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )

Proof of Theorem tfr2a
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . 4  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
21tfrlem9 6404 . . 3  |-  ( A  e.  dom recs ( G
)  ->  (recs ( G ) `  A
)  =  ( G `
 (recs ( G )  |`  A )
) )
3 tfr.1 . . . 4  |-  F  = recs ( G )
43dmeqi 4878 . . 3  |-  dom  F  =  dom recs ( G )
52, 4eleq2s 2299 . 2  |-  ( A  e.  dom  F  -> 
(recs ( G ) `
 A )  =  ( G `  (recs ( G )  |`  A ) ) )
63fveq1i 5576 . 2  |-  ( F `
 A )  =  (recs ( G ) `
 A )
73reseq1i 4954 . . 3  |-  ( F  |`  A )  =  (recs ( G )  |`  A )
87fveq2i 5578 . 2  |-  ( G `
 ( F  |`  A ) )  =  ( G `  (recs ( G )  |`  A ) )
95, 6, 83eqtr4g 2262 1  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   {cab 2190   A.wral 2483   E.wrex 2484   Oncon0 4409   dom cdm 4674    |` cres 4676    Fn wfn 5265   ` cfv 5270  recscrecs 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-recs 6390
This theorem is referenced by:  tfr0  6408  tfri2d  6421  tfrcl  6449  tfri2  6451  frecsuclem  6491
  Copyright terms: Public domain W3C validator