ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr2a Unicode version

Theorem tfr2a 6336
Description: A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr2a  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )

Proof of Theorem tfr2a
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2187 . . . 4  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
21tfrlem9 6334 . . 3  |-  ( A  e.  dom recs ( G
)  ->  (recs ( G ) `  A
)  =  ( G `
 (recs ( G )  |`  A )
) )
3 tfr.1 . . . 4  |-  F  = recs ( G )
43dmeqi 4840 . . 3  |-  dom  F  =  dom recs ( G )
52, 4eleq2s 2282 . 2  |-  ( A  e.  dom  F  -> 
(recs ( G ) `
 A )  =  ( G `  (recs ( G )  |`  A ) ) )
63fveq1i 5528 . 2  |-  ( F `
 A )  =  (recs ( G ) `
 A )
73reseq1i 4915 . . 3  |-  ( F  |`  A )  =  (recs ( G )  |`  A )
87fveq2i 5530 . 2  |-  ( G `
 ( F  |`  A ) )  =  ( G `  (recs ( G )  |`  A ) )
95, 6, 83eqtr4g 2245 1  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   {cab 2173   A.wral 2465   E.wrex 2466   Oncon0 4375   dom cdm 4638    |` cres 4640    Fn wfn 5223   ` cfv 5228  recscrecs 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-recs 6320
This theorem is referenced by:  tfr0  6338  tfri2d  6351  tfrcl  6379  tfri2  6381  frecsuclem  6421
  Copyright terms: Public domain W3C validator