ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr2a Unicode version

Theorem tfr2a 6407
Description: A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr2a  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )

Proof of Theorem tfr2a
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . . 4  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
21tfrlem9 6405 . . 3  |-  ( A  e.  dom recs ( G
)  ->  (recs ( G ) `  A
)  =  ( G `
 (recs ( G )  |`  A )
) )
3 tfr.1 . . . 4  |-  F  = recs ( G )
43dmeqi 4879 . . 3  |-  dom  F  =  dom recs ( G )
52, 4eleq2s 2300 . 2  |-  ( A  e.  dom  F  -> 
(recs ( G ) `
 A )  =  ( G `  (recs ( G )  |`  A ) ) )
63fveq1i 5577 . 2  |-  ( F `
 A )  =  (recs ( G ) `
 A )
73reseq1i 4955 . . 3  |-  ( F  |`  A )  =  (recs ( G )  |`  A )
87fveq2i 5579 . 2  |-  ( G `
 ( F  |`  A ) )  =  ( G `  (recs ( G )  |`  A ) )
95, 6, 83eqtr4g 2263 1  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   Oncon0 4410   dom cdm 4675    |` cres 4677    Fn wfn 5266   ` cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-recs 6391
This theorem is referenced by:  tfr0  6409  tfri2d  6422  tfrcl  6450  tfri2  6452  frecsuclem  6492
  Copyright terms: Public domain W3C validator