ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0 GIF version

Theorem tfr0 6326
Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr0 ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅))

Proof of Theorem tfr0
StepHypRef Expression
1 tfr.1 . . . 4 𝐹 = recs(𝐺)
21tfr0dm 6325 . . 3 ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹)
31tfr2a 6324 . . 3 (∅ ∈ dom 𝐹 → (𝐹‘∅) = (𝐺‘(𝐹 ↾ ∅)))
42, 3syl 14 . 2 ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘(𝐹 ↾ ∅)))
5 res0 4913 . . 3 (𝐹 ↾ ∅) = ∅
65fveq2i 5520 . 2 (𝐺‘(𝐹 ↾ ∅)) = (𝐺‘∅)
74, 6eqtrdi 2226 1 ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  c0 3424  dom cdm 4628  cres 4630  cfv 5218  recscrecs 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-recs 6308
This theorem is referenced by:  rdg0  6390  frec0g  6400
  Copyright terms: Public domain W3C validator