Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr0 | GIF version |
Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr0 | ⊢ ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
2 | 1 | tfr0dm 6290 | . . 3 ⊢ ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹) |
3 | 1 | tfr2a 6289 | . . 3 ⊢ (∅ ∈ dom 𝐹 → (𝐹‘∅) = (𝐺‘(𝐹 ↾ ∅))) |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘(𝐹 ↾ ∅))) |
5 | res0 4888 | . . 3 ⊢ (𝐹 ↾ ∅) = ∅ | |
6 | 5 | fveq2i 5489 | . 2 ⊢ (𝐺‘(𝐹 ↾ ∅)) = (𝐺‘∅) |
7 | 4, 6 | eqtrdi 2215 | 1 ⊢ ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ∅c0 3409 dom cdm 4604 ↾ cres 4606 ‘cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-recs 6273 |
This theorem is referenced by: rdg0 6355 frec0g 6365 |
Copyright terms: Public domain | W3C validator |