ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr0 GIF version

Theorem tfr0 6102
Description: Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr0 ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅))

Proof of Theorem tfr0
StepHypRef Expression
1 tfr.1 . . . 4 𝐹 = recs(𝐺)
21tfr0dm 6101 . . 3 ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹)
31tfr2a 6100 . . 3 (∅ ∈ dom 𝐹 → (𝐹‘∅) = (𝐺‘(𝐹 ↾ ∅)))
42, 3syl 14 . 2 ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘(𝐹 ↾ ∅)))
5 res0 4730 . . 3 (𝐹 ↾ ∅) = ∅
65fveq2i 5321 . 2 (𝐺‘(𝐹 ↾ ∅)) = (𝐺‘∅)
74, 6syl6eq 2137 1 ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  wcel 1439  c0 3287  dom cdm 4451  cres 4453  cfv 5028  recscrecs 6083
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-res 4463  df-iota 4993  df-fun 5030  df-fn 5031  df-fv 5036  df-recs 6084
This theorem is referenced by:  rdg0  6166  frec0g  6176
  Copyright terms: Public domain W3C validator