Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrex | GIF version |
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
tfrex.1 | ⊢ 𝐹 = recs(𝐺) |
tfrex.2 | ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) |
Ref | Expression |
---|---|
tfrex | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrex.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
2 | 1 | fveq1i 5462 | . 2 ⊢ (𝐹‘𝐴) = (recs(𝐺)‘𝐴) |
3 | eqid 2154 | . . . 4 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} | |
4 | 3 | tfrlem3 6248 | . . 3 ⊢ {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
5 | tfrex.2 | . . 3 ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) | |
6 | 4, 5 | tfrexlem 6271 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (recs(𝐺)‘𝐴) ∈ V) |
7 | 2, 6 | eqeltrid 2241 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1330 = wceq 1332 ∈ wcel 2125 {cab 2140 ∀wral 2432 ∃wrex 2433 Vcvv 2709 Oncon0 4318 ↾ cres 4581 Fun wfun 5157 Fn wfn 5158 ‘cfv 5163 recscrecs 6241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-recs 6242 |
This theorem is referenced by: rdgexggg 6314 |
Copyright terms: Public domain | W3C validator |