ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrex GIF version

Theorem tfrex 6512
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
tfrex.1 𝐹 = recs(𝐺)
tfrex.2 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
Assertion
Ref Expression
tfrex ((𝜑𝐴𝑉) → (𝐹𝐴) ∈ V)
Distinct variable group:   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem tfrex
Dummy variables 𝑓 𝑔 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrex.1 . . 3 𝐹 = recs(𝐺)
21fveq1i 5627 . 2 (𝐹𝐴) = (recs(𝐺)‘𝐴)
3 eqid 2229 . . . 4 {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))}
43tfrlem3 6455 . . 3 {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
5 tfrex.2 . . 3 (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
64, 5tfrexlem 6478 . 2 ((𝜑𝐴𝑉) → (recs(𝐺)‘𝐴) ∈ V)
72, 6eqeltrid 2316 1 ((𝜑𝐴𝑉) → (𝐹𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  Oncon0 4453  cres 4720  Fun wfun 5311   Fn wfn 5312  cfv 5317  recscrecs 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-recs 6449
This theorem is referenced by:  rdgexggg  6521
  Copyright terms: Public domain W3C validator