ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgss3 GIF version

Theorem tgss3 14521
Description: A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss3 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))

Proof of Theorem tgss3
StepHypRef Expression
1 bastg 14504 . . . 4 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
21adantr 276 . . 3 ((𝐵𝑉𝐶𝑊) → 𝐵 ⊆ (topGen‘𝐵))
3 sstr2 3199 . . 3 (𝐵 ⊆ (topGen‘𝐵) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶)))
42, 3syl 14 . 2 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶)))
5 tgvalex 13066 . . . . . 6 (𝐶𝑊 → (topGen‘𝐶) ∈ V)
6 tgss 14506 . . . . . 6 (((topGen‘𝐶) ∈ V ∧ 𝐵 ⊆ (topGen‘𝐶)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)))
75, 6sylan 283 . . . . 5 ((𝐶𝑊𝐵 ⊆ (topGen‘𝐶)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)))
87ex 115 . . . 4 (𝐶𝑊 → (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶))))
98adantl 277 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶))))
10 tgidm 14517 . . . . 5 (𝐶𝑊 → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶))
1110adantl 277 . . . 4 ((𝐵𝑉𝐶𝑊) → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶))
1211sseq2d 3222 . . 3 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)) ↔ (topGen‘𝐵) ⊆ (topGen‘𝐶)))
139, 12sylibd 149 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)))
144, 13impbid 129 1 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  Vcvv 2771  wss 3165  cfv 5270  topGenctg 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-topgen 13063
This theorem is referenced by:  tgss2  14522  2basgeng  14525  xmettxlem  14952  xmettx  14953
  Copyright terms: Public domain W3C validator