| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpdom1g | GIF version | ||
| Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpdom1g | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 6855 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 4736 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 3 | xpcomeng 6948 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) | |
| 4 | 3 | ancoms 268 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
| 5 | 2, 4 | sylan2 286 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
| 6 | xpdom2g 6952 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) | |
| 7 | 1 | brrelex2i 4737 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
| 8 | xpcomeng 6948 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ∈ V) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) | |
| 9 | 7, 8 | sylan2 286 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) |
| 10 | domentr 6906 | . . 3 ⊢ (((𝐶 × 𝐴) ≼ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) | |
| 11 | 6, 9, 10 | syl2anc 411 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) |
| 12 | endomtr 6905 | . 2 ⊢ (((𝐴 × 𝐶) ≈ (𝐶 × 𝐴) ∧ (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
| 13 | 5, 11, 12 | syl2anc 411 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 Vcvv 2776 class class class wbr 4059 × cxp 4691 ≈ cen 6848 ≼ cdom 6849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-en 6851 df-dom 6852 |
| This theorem is referenced by: xpdom1 6955 xpct 12882 |
| Copyright terms: Public domain | W3C validator |